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Chapter 1

An Introduction to Linear QPL

1.1 Introduction to L-QPL

This chapter presents an overview of the linear quantum programming language. Explana-
tions of L-QPL programs, statements, and expressions are given.

L-QPL is a language for experimenting with quantum algorithms. The language pro-
vides an expressive syntax for creating functions and defining and working with different
datatypes. L-QPL has qubits as first class citizens of the language, together with quantum
control. Classical operations and classical control are also available to work with classical
data.

The language design started from QPL in [Sel04] and rapidly evolved to a point where
a direct comparison is somewhat difficult. Major differences are the type system, the syntax
and structure of functions and the choices of individual statements.

1.1.1 Functional versus imperative

L-QPL is a functional language that uses single assignment. It resembles QPL in this aspect
rather than QML of [AG05]. Single assignment means that a variable always has a unique
value until its use. (See sub-section 1.1.2 below.)

Like most functional languages, side effects are not allowed in functions, other than those
that occur due to quantum entanglement. Side effects in imperative languages are those where a
global variable is updated or values are read or written. An example of this in an imperative
quantum language is a procedure in QCL from [Öme00]. L-QPL does not have the concept of
a global variable. Currently, I/O is undefined. Side effects from quantum entanglement can
occur when a qubit is passed as a parameter to a function and it is operated on in the function.

1.1.2 Linearity of L-QPL

The language L-QPL treats all quantum variables as linear. This means that any variable may
only be used once. The primary reason for implementing this is the underlying aspect of linear-
ity of quantum systems, as exemplified by the no-duplication rule which must be respected at
all times. This allows us to provide compile-time checking that enforces this rule.
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The compiler and language do provide ways to “ease the burden” of linear thinking. For
example, function calls (see sub-section 1.3.6 on page 15) provide a specialized syntax for vari-
ables which are both input and output to a function. The ability to use a classical value (inte-
ger or boolean) multiple times is handled by use statements (see sub-section 1.3.5 on page 14),
which place values on to the classical stack where the values may be used multiple times.

1 #Import Prelude . qpl
2

3 len : : ( l i s t I n : L i s t ( a ) ; length : Int ) =

4 { case l i s t I n of
5 Nil => { length = 0 }
6 Cons ( _ , t a i l ) =>

7 { t lLen := len ( t a i l ) ;
8 length = 1 + t lLen }
9 }

Figure 1.1: L-QPL code to return the length of the list

An example illustrating linearity is given in figure 1.1. In line 3, the function len is defined
as taking one argument of type List (a) and returning a variable of type Int. The input only
argument, listIn , must be destroyed in the function. When the case statement refers to listIn , the
argument is destroyed, fulfilling the requirement of the function to do so.

1.2 L-QPL programs

L-QPL programs consist of combinations of functions and data definitions, with one special
function named main. The functions and data definitions are simultaneously declared and so
may be given in any order. The program will start executing at the main function.

A physical program will typically consist of one or more source files with the suffix .qpl.
Each source file may contain functions and data definitions. It may also import the contents of
other source files. The name of a source file is not significant in L-QPL. Common practice is to
have one significant function per source file and then to import all these files into the source
file containing the main function.

The above structure was chosen thinking of Haskell [Pey03] and C [KR88]. Global defini-
tions of functions and types is borrowed from Haskell, while the main start point and import
feature is a combination of Haskell and C.

1.2.1 Data definitions

L-QPL provides the facilities to define datatypes with a syntax reminiscent of Haskell [Pey03].
Natively, the language provides Int, Qubit and Bool types. Bool is the standard Boolean type

with values true and false . Int is a standard 32-bit integer. Qubit is a single qubit.
In L-QPL both native types and other constructed datatypes may be used in the definition

of constructed datatypes. These constructed datatypes may involve sums, products, singleton
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types and parametrization of the constructed type. For example, a type that is the sum of the
integers and the Booleans can be declared as follows:

qdata E i the r i b = { Lef t ( Int ) | Right (Bool ) }

The above example illustrates the basic syntax of the data declaration.

Syntax of datatype declarations. Each datatype declaration must begin with the keyword
qdata. This is followed by the type name, whichmust be an identifier starting with an uppercase
letter. The type name may also be followed by any number of type variables. Type variables
must be and identifier starting with a lower case letter. Typically, a single letter is used. This is
then followed by an equals sign and completed by a list of constructors. The list of constructors
must be surrounded by braces and each constructor must be separated from the others by a
vertical bar. Each constructor is followed by an optional parenthesized list of simple types.
Each simple type is either a built-in type, (one of Int , Bool, Qubit), a type variable that was
used in the type declaration, or another declared type, surrounded by parenthesis. L-QPL
allows recursive references to the type currently being declared. All constructors must begin
with an upper case letter. Constructors and types are in different namespaces, so it is legal to
have the same name for both. For example:

qdata Record a b = { Record ( Int , a , b ) }

In the above type definition, the first “Record” is the type, while the second is the constructor.
The triplet “(Int ,a,b)” is the product of the type Int and the type variables a and b. Since
constructors may reference their own type and other declared types, recursive data types
such as lists and various types of trees may be created:

qdata L i s t a = {Nil | Cons ( a , L i s t ( a ) ) }
qdata Tree a = { Leaf ( a ) | Br ( Tree ( a ) , Tree ( a ) ) }
qdata STree a = { Tip | Fork ( STree ( a ) , a , STree ( a ) ) }
qdata Colour = {Red | Black }
qdata RBSet a = {Empty |

RBTip ( Colour , RBSet ( a ) , a , RBSet ( a ) ) }
qdata RTree a = {Rnode ( a , L i s t ( a ) ) }
qdata Rose a = { Rose ( L i s t ( a , Rose ( a ) ) ) }

1.2.2 Function definitions

Function definitions may appear in any order within a L-QPL source file.

Syntax of function definitions. The first element of a function definition is the name, an
identifier starting with a lower case letter. This is always followed by a double semi-colon
and a signature, which details the type and characteristics of input and output arguments.
The final component of the function definition is a body, which is a block of L-QPL statements.
Details of statements are given in section 1.3 on page 9.

The structure of function definitions is unique to L-QPL, although broadly based on one
of the acceptable syntaxes for C function definitions as in [KR88]. The major difference occurs
in the signature which, as will be seen below, allows for both classical and quantum input
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arguments and specifies the quantum outputs of a function. Another difference is that L-QPL
defines all functions globally, hence there is no requirement for declarations separate from the
definitions.

Let us examine two examples of functions. The first, in figure 1.2 is a fairly standard
function to determine the greatest common divisor of two integers.

1 gcd : : ( a : Int , b : Int | ; ans : Int ) =

2 { i f b == 0 => { ans = a }
3 a == 0 => { ans = b }
4 a > b => { ans = gcd (b , a mod b ) }
5 else => { ans = gcd ( a , b mod a ) }
6 }

Figure 1.2: L-QPL function to compute the GCD

The first line has the name of the function, gcd, a separating double colon, and the signa-
ture. The signature of the function is (a :Int , b:Int | ; ans:Int). This signature tells the compiler
that gcd expects two input arguments, each of type Int and that they are classical. The com-
piler deduces this from the fact that they both appear before the ’|’. In this case there are no
quantum input arguments as there are no parameters between the ’|’ and the ’ ;’. The last
parameter tells us that this function returns one quantum item of type Int. Returned items are
always quantum data.

The signature specifies variable names for the parameters used in the body. All input
parameters are available as variable names in expression and statements. Output parameters
are available to be assigned and, indeed, must be assigned by the end of the function.

The next example, in figure 1.3 on the next page highlights the linearity of variables in
L-QPL. This function is used to create a list of qubits corresponding to the bit representation
of an input integer.

At line 1, the program uses the import command. #Import must have a file name directly
after it. This command directs the compiler to stop reading from the current file and to read
code in the imported file until the end of that file, after which it continues with the current
file. The compiler will not reread the same file in a single compilation, and it will import from
any file.

For example, consider a case with three source files, A, B and C. Suppose file A has import
commands for both B and C, with B being imported first. Further suppose that file B imports
C. The compiler will start reading A, suspend at the first import and start reading B. When it
reaches B’s #Import of C, it will suspend the processing of B and read C. After completing the
read of C, the compiler reverts to processing B. After completing the read of B, the compiler
does a final reversion and finishes processing A. However, when A’s #Import of C is reached,
the compiler will ignore this import as it keeps track of the fact C has already been read.

In the signature on lines 3-4, the function accepts one quantum parameter of type Int. It
returns a Qubit list and an Int. The integer returned, in this program, is computed to have the
same value as the one passed in. If this had not been specified in this way, the integer would
have been destroyed by the function. Generally, any usage of a quantum variable destroys that
variable.

Cockett / Giles 8
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1 #Import Prelude . qpl
2

3 toQubi tL i s t : : ( n : Int ; // Input : a p r o b a b i l i s t i c i n t
4 nq : L i s t (Qubit ) , n : Int )= //Output : qubit l i s t , o r i g i n a l i n t
5 { use n in
6 { i f n == 0 =>

7 { nq = Nil }
8 ( n mod 2) == 0 =>

9 { n ’ = n ≫ 1 ;
10 ( nq ’ , n ’ ) = toQubi tL i s t (n ’ ) ;
11 nq = Cons (|0> , nq ’ ) }
12 else => { n ’ = n ≫ 1 ;
13 toQubi tL i s t (n ’ ; nq ’ , n ’ ) ;
14 nq = Cons (|1> , nq ’ ) } ;
15 n = n //Recreate as p r o b a b i l i s t i c i n t
16 }
17 }

Figure 1.3: L-QPL function to create a qubit register

In the body of the function, note the use n in the block of statements. This allows repeated
use of the variable n at lines 6, 8, 9, 12 and 15. In these uses, n is a classical variable, no longer
on the quantum stack. The last usage on line 15 where n is assigned to itself, returns n to the
quantum world.

1.3 L-QPL statements

The L-QPL language has the following statements:

Assignment: The assign statement, e.g. x = t;

Classical control: The if - else statement.

Case: The case for operating on constructed data types.

Measure: The measure statement which measures a qubit and executes dependent statements.

Use: The use and classical assign statements which operate on classical data, moving it on to
the classical stack for processing.

Function calls: The various ways of calling functions or applying transformations.

Blocks: A group of statements enclosed by ’{’ and ’}’.

Quantum control: Control of statements by the ⇐ qualifier.

Divergence: The zero statement.

Other: the discard statement.

Cockett / Giles 9
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Most of these correspond to the conceptual statements for quantum pseudo-code as given
in [Kni96].

1.3.1 Assignment statement

Assignments create variables. Typical examples of these are:

q1 = |0>;
i = 42;
bt1 = Br(Leaf(q1), Br(Leaf(|0>), Leaf(|1>)));

Here the first line creates a qubit, q1, with initial value |0〉. The second line creates an integer
,i, with the value 42. The last line creates a binary tree, bt1, with q1 as its leftmost node, and
the right node being a sub-tree with values |0〉 and |1〉 in the left and right nodes respectively.
Note that after the execution of the third statement, the variable q1 is no longer in scope so the
name may be reused by reassigning some other value to it.

The variables on the left hand side of an assignment are always quantum variables.

Syntax of assignment statements. An assignment statement always begins with an identi-
fier. This must be followed by a single equals sign and then an expression. Expressions are
introduced and defined in section 1.4 on page 19

Identifiers in L-QPL must always start with a lower case letter.

1.3.2 Classical control

Classical control provides a way to choose sets of instructions to execute based upon the
values on the classical stack.

1 smallPrime : : ( a : Int | ;
2 isSmallPrime : Bool ) =

3 { i f a =< 1 => { isSmallPrime = f a l s e }
4 a == 2 || a == 3 || a == 5 =>

5 { isSmallPrime = t rue }
6 a == 4 => { isSmallPrime = f a l s e }
7 else => { isSmallPrime = f a l s e }
8 }

Figure 1.4: L-QPL program demonstrating if−else

The expressions in the selectors must be classical. This means they can only consist of
operations on constants and classical identifiers. It is a semantic error to have an expression
that depends on a quantum variable. For an example, see the code to determine if an input
number is a small prime in figure 1.4.

Some form of classical control is encountered in all current quantum programming lan-
guages. It is central to the semantics of [Sel04]. Note that many languages also include a
classically controlled looping statement (such as while or do). L-QPL does not, relying on re-
cursive functions to achieve the same end.

Cockett / Giles 10
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Syntax of the if − else statement. The statement starts with the word if, followed by one or
more selectors. Each selector is composed of a classical Boolean expression eb, the symbols =>
and a dependent block. The statement is completed by a special selector where the Boolean
expression is replaced with the word else.

In the list of ei => bi selectors, bi is executed only when ei is the first expression to
evaluate to true. All others are skipped. The final grouping of else => block is a default and
will be executed when all the selector expressions in a list evaluate to false .

When writing the dependent blocks of the selectors, quantum variable creation must be
the same in each block. The compiler will give you a semantic warning if a quantum variable
is created in one branch and not another.

1.3.3 Measure statement

The measure statement performs a measurement of a qubit and executes code depending on
the outcome. Currently in L-QPL, all measures are done with respect to the basis {|0〉 , |1〉}.
Referring to figure 1.5, there is a measure on line 5.

1 qdata Coin = {Heads | Ta i l s }
2 c f l i p : : ( ; c : Coin ) =

3 { q = |0> ;
4 Had q ;
5 measure q of
6 |0> => { c = Heads }
7 |1> => { c = Ta i l s }
8 }
9 main : : ( ) =

10 { c = c f l i p ( ) }

(a) Coin flip code

(b) Stack machine state at end

Figure 1.5: L-QPL program to do a coin flip

Consider the program in figure 1.5 which emulates a coin flip. In the function cflip , a qubit
is prepared by initializing it to |0〉 and applying the Hadamard transform. This creates a qubit

whose density matrix is
(

.5 .5

.5 .5

)

. When this qubit is measured, it has a 50% chance of being

0 and an equal chance of being 1.
In the branches of the measure, different values are assigned to the return variable c. Each

of these assignments happens with a probability of 50%. Once the measure statement is com-
pleted, the variable c will be Heads and Tails each with a probability of 50%. In the quantum
stack machine this is represented as in sub-figure b of figure 1.5.

This illustrates the largest difference between quantum and classical processing of choices.
In classical programming languages, a choice such as a case type statement will only execute
the code on one of the branches of the case. In L-QPL, every branch may be executed.

When writing the dependent blocks of measure (and case in sub-section 1.3.4 on the fol-
lowing page) variable creation must be the same in each dependent list of statements. The

Cockett / Giles 11
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1 main : : ( ) =

2 { q = |0> ;
3 Had q ;
4 measure q of
5 |0> => { i = 0 }
6 |1> => { i = 17 } ;
7 q = |0>
8 }

(a) Balanced creation

1 main : : ( ) =

2 { q = |0> ;
3 Had q ;
4 measure q of
5 |0> => { c = 0 }
6 |1> => {d = 17 } ;
7 q = |0>
8 }

(b) Unbalanced creation

Figure 1.6: L-QPL programs contrasting creation

compiler will give you a semantic warning if a variable is created in one branch and not an-
other.

For example, consider figure 1.6. In the left hand program on the measure starting at line
4, each branch creates a variable named ’i’. This is legal and from line 7 forward, ’i’ will be
available.

On the other hand, the measure in the right hand program starting in line 4 assigns to
the variable ’c’ in the |0〉 branch and ’d’ in the |1〉 branch. At line 7, neither variable will be
available. The compiler will give the warnings:

Warning: Unbalanced creation, discarding c of type INT
Warning: Unbalanced creation, discarding d of type INT

Syntax of the measure statement. This statement starts with the word measure, followed by a
variable name, which must be of type Qubit. Next, the keyword of signals the start of the two
case selections. The case selection starts with either |0〉 or |1〉, followed by => and the block of
dependent statements.

Note that both case selections for a qubit must be present. However, it is permissible to not
have any statements in a block.

1.3.4 Case statement

The case statement is used with any variable of a declared datatype.
In figure 1.7 on the facing page, the programdeclares the List data type, which is parametrized

by one type variable and has two constructors: Nil which has no arguments and Cons which
takes two arguments of types a and List (a) respectively.

The function reverse takes a list as an input argument and returns a single list, which is the
original list in reverse order. Because of the linearity of the language the original input list
is not in scope at the end of the function. The function reverse delegates to the function rev’

which uses an accumulator to hold the list as it is reversed.
The case statement begins on line 7. For Nil, it assigns the accumulator to the return list.

For Cons, it first adds the current element to the front of the accumulator list, then it uses a
recursive call to reverse the tail of the original list with the new accumulator.

Consider the example in figure 1.8 on the next page. TTree is a parametrized data type
which depends on the type variable a. It has three constructors: Tip which takes no argu-
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1 qdata L i s t a = {Nil | Cons ( a , L i s t ( a ) ) }
2

3 reverse : : ( l i s : L i s t ( a ) ; r e v l i s : L i s t ( a ) )=
4 { rev ’ ( l i s , Nil ; r e v l i s ) }
5

6 rev ’ : : ( l i s : L i s t ( a ) , accumIn : L i s t ( a ) ; r e tu rnL i s t : L i s t ( a ) )=
7 { case l i s of
8 Nil => { r e tu rnL i s t = accumIn }
9 Cons (hd , t a i l ) => { acc = Cons (hd , accumIn ) ;
10 r e tu rnL i s t = rev ’ ( t a i l , acc ) }
11 }

Figure 1.7: L-QPL program demonstrating case, a function to reverse a list.

1 qdata TTree a = { Tip | Br ( TTree ( a ) , a , TTree ( a ) ) | Node( a ) }
2

3 treeMaxDepth : : ( t : TTree ( a ) ; depth : Int ) =

4 { case t of
5 Tip => { depth = 0 }
6 Node( _ ) => { depth = 1 }
7 Br ( t1 , _ , t 2 ) =>

8 { j := treeMaxDepth ( t1 ) ;
9 k := treeMaxDepth ( t2 ) ;
10 i f j > k => { depth = 1 + j }
11 else => { depth = 1 + k } }
12 }

Figure 1.8: L-QPL program demonstrating case, a function to compute the max tree depth.
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ments; Br which takes three arguments of types TTree a, a and TTree a; and Node which takes
one argument of type a.

In treeMaxDepth, the case statement on line 4 illustrates a “don’t care” pattern for both the
Node and Br constructors. This function returns the maximum depth of the TTree and actually
discards the actual data elements stored at nodes.

Syntax of the case statement. This statement starts with theword case, followed by a variable
of some declared type. Next, the keyword of signals the start of the case selections. The
number of constructors in a type determine how many case selections the statement has.
There is one selection for each constructor. Each case selection consists of a constructor pattern,
a ’=>’ and dependent statements.

Constructor patterns are the constructor followed by a parenthesized list of variables and
/ or don’t care symbols, ’_’. Non-parametrized constructors appear without a list of variable
names. The don’t care symbol causes data to be discarded.

1.3.5 Use and classical assignment statements

The use statement is used with any variable of type Int or Bool. This statement has a single
set of dependent statements. These may either be explicitly attached to the use statement or
implicit. Implicit dependent statements are all the statements following the use until the end
of the current block.

Classical assignment is grouped here as it is syntactic sugar for a use with implicit state-
ments. This is illustrated in figure 1.9.

...
...

i := exp;
s1;

≡
i = exp;
use i;
s1;

...
...

Figure 1.9: Syntactic sugar for use / classical assignment

The three types of classical use are semantically equivalent, but do have different syntaxes
as illustrated in figure 1.10 on the facing page.

In sub-figure (a) of figure 1.10, the use statement starts on line 4. The next two statements
are explicitly in its scope, which ends at line 6. In sub-figure (b) of the same figure, the use

at line 4 is implicit. Its scope extends to line 7. Finally, in sub-figure(c), the same effect is
achieved with two classical assignments at lines 2 and 3. The scope of these assignments
extend to line 6.

Unlike data types and Qubits, which have a maximum number of sub-stacks, an Int has the
potential to have an unbounded number of values and therefore sub-stacks. The dependent
statements of the use statement are executed for each of these values.

To execute different statements depending on the value of the Int, L-QPL provides the if -
else statement as discussed in sub-section 1.3.2 on page 10. Typical use would be immediately
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1 Br ( t1 , _ , t 2 ) =>

2 { j = treeMaxDepth ( t1 ) ;
3 k = treeMaxDepth ( t2 ) ;
4 use j , k in
5 { i f j > k => { depth = 1 + j }
6 else => { depth = 1 + k } }
7 }

(a) Explicit dependence

1 Br ( t1 , _ , t 2 ) =>

2 { j = treeMaxDepth ( t1 ) ;
3 k = treeMaxDepth ( t2 ) ;
4 use j , k ;
5 i f j > k => { depth = 1 + j }
6 else => { depth = 1 + k }
7 }

(b) Implicit dependence

1 Br ( t1 , _ , t 2 ) =>

2 { j := treeMaxDepth ( t1 ) ;
3 k := treeMaxDepth ( t2 ) ;
4 i f j > k => { depth = 1 + j }
5 else => { depth = 1 + k }
6 }

(c) Classical assign

Figure 1.10: Fragments of L-QPL programs contrasting use syntax

after the use statement, or as the first statement of the dependent block of an explicit use

statement.

Syntax of the use statement. This statement starts with the word use, followed by a list of
variable names, which must be of type Int or Bool. If there is an explicit dependent block for
the statement, it is given by the keyword in followed by the dependent block.

When the use statement is not followed by a dependent block, the rest of the statements in
the enclosing block are considered in the scope of the use.

Classical assign syntax is a variable name, followed by the symbol ’ :=’ followed by an
expression. The expression must have type Int or Bool.

1.3.6 Function calls

Function calls include calling functions defined in programs and the predefined transforms.
The list of predefined transforms valid in a L-QPL program are given in table 1.1 on the fol-
lowing page.

In addition to the predefined transforms, L-QPL allows you to prefix any of the predefined
transformations with the string Inv− to get the inverse transformation. Controlled versions of
transforms are accomplished by the built-in control mechanism using <=.

The signatures of transforms are dependent upon the size of the associated matrix. A 2×2
matrix gives rise to the signature (q:Qubit ; q:Qubit). In general, a 2n× 2n matrix will require n

qubits in and out. The parametrized transforms such as Rot will require one or more integers
as input.

Syntax of function calls

There are three different calling syntaxes for functions:
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L-QPL A.K.A. Matrix

Not X, Pauli-X, ρX

[

0 1
1 0

]

RhoY Y, Pauli-Y, ρY

[

0 −i

i 0

]

RhoZ (=Rot(0)) Z, Pauli-Z, ρZ

[

1 0
0 −1

]

Had Had, H 1√
2

[

1 1
1 −1

]

Swap Swap









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









Phase (=Rot(2)) S, Phase
√

Z

[

1 0
0 i

]

T(=Rot(3)) T , π
8 ,
√

S

[

1 0
0 eiπ/4

]

Rot(n) Rn, Rotation
[

1 0
0 e2iπ/2n

]

Table 1.1: L-QPL transforms
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1. Functional— (y1, . . . ,ym) = f(n1, . . . ,nk | x1, . . . , xj).

2. Procedural— f(n1, . . . ,nk | x1, . . . , xj ; y1, . . . ,ym).

3. Transformational— f(n1, . . . ,nk) z1 z2 . . . zj.

Functions with classical and quantum inputs. These functions may be called1 in each of
the three ways.

1 f : : ( c1 : Int , c2 : Int | q1 : Qubit , i 1 : Int ; a : Qubit , b : Int ) = { . . . }
2 . . .
3 ( a , b ) = f ( c1 , c2 | q1 , i 2 ) ;
4 f ( c1 , c2 | q1 , i 2 ; a , b ) ;
5 f ( c1 , c2 ) q i ;

When a function is called in the transformational syntax, as on the last line of the above
code, the arguments separated by spaces (q i in the example) are both passed into the function
as arguments and used as return variables. The arguments in the parenthesis ( c1,c2 in our
example), must be classical and a semantic error will result if a quantum variable is used. If
the number of in and out quantum arguments are not the same or their types do not match,
this syntax is not available.

Functions which have no quantum input arguments. Functions which have only classical
inputs may be called in either the functional or procedural syntax. As there are no input
quantum arguments, transformational syntax is not allowed.

1 g : : ( c1 : Int , c2 : Int | ; r : Int , d : Int ) = { . . . }
2 . . .
3 ( a , b ) = g ( c1 , c2 | ) ;
4 g ( c1 , c2 | ; a , b ) ;

Functions which have no classical input arguments. Functions having only quantum in-
puts may use all three syntaxes. In this case, where the classical variable list of arguments
is empty, the “|” may be eliminated in procedural or functional calling, and the parenthesis
may be eliminated in transformational calling.

1 h : : ( q1 : Int , q2 : Int ; r : Int , d : Int ) = { . . . }
2 . . .
3 ( a , b ) = h (|c , d ) ;
4 ( a , b ) = h ( c , d ) ;
5 h ( | a , b ; c , d ) ;
6 h ( a , b ; c , d ) ;
7 h a b ;

1A function call where a single unparenthesized variable appears on the left hand side of the equals is actually
an assignment statement. The right hand side of the assignment is a function expression. See sub-section 1.3.1
and sub-section 1.4.4 for further details.
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Linearity of function call arguments. Each input argument is no longer in scope after the
function call. If the input is a simple identifier, the same identifier may be used in the output
list of the function. The transformational syntax uses this technique to leave the variable
names unchanged.

Syntactic forms of function and transform calls. In all three of the forms for function call-
ing, the number and type of input arguments must agree with the definition of the function.
Output identifiers must agree in number and their type is set according to the definition of
the functions output parameters. Output variables are always quantum.

The functional syntax for function calling has three parts. The first part is a parenthesized
list of variable names separated by commas. The parenthesized list is then followed by an
equals sign. The right hand side consists of the function name followed by the parenthesized
input arguments. The input arguments consists of two lists of arguments separated by ’|’.
The first list consists of the classical arguments, the second of the quantum arguments. Each
argument must be a valid expression as defined in section 1.4 on the next page. If there are no
classical arguments, the ’|’ is optional.

The procedural syntax for function calling starts with the function name, followed by a
parenthesized grouping of input and output arguments. As in the functional form, the list of
classical input arguments are separated from the quantum ones by ’|’, which may be elim-
inated when there are no classical arguments. The input arguments are separated from the
output arguments by ’ ;’.

The transformational syntax starts with the function name followed by a parenthesized
list of classical expressions and then by a series of identifiers, separated by white space. A
requirement for using this syntax is that the number and types of the input and output quan-
tum arguments must be the same. The identifiers will be passed as input to the function and
will be returned by the function. The parenthesis for the list of classical expressions may be
eliminated when there are no classical parameters.

Function calls may also be expressions, which is discussed in sub-section 1.4.4.

1.3.7 Blocks

Blocks are created by surrounding a list of statements with braces. A block may appear wher-
ever a statement does. All of the “grouping” types of statements require blocks rather than
statements as their group. See, for example, the discussion on case statements in sub-section 1.3.4.

1.3.8 Quantum control

Quantum control provides a general way to create and use controlled unitary transforms in
an L-QPL program. An example of quantum control is shown in the prepare and teleport
functions in figure 1.11 on the facing page.

Syntax of quantum control In L-QPL any statement, including block statements and proce-
dure calls may be quantum controlled. Semantically, this will affect all transforms that occur
within the controlled statement, including any of the transforms in a called function. The
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1 prepare : : ( ; a : Qubit , b : Qubit )=
2 { a = |0> ; b = |0> ;
3 Had a ;
4 Not b ⇐ a ;
5 }
6 t e l epo r t : : ( n : Qubit , a : Qubit , b : Qubit ; b : Qubit ) =

7 { Not a ⇐ n ;
8 Had n ;
9 measure a of
10 |0> => { } |1> => {Not b } ;
11 measure n of
12 |0> => { } |1> => {RhoZ b }
13 }

Figure 1.11: L-QPL program demonstrating quantum control

syntax is statement followed by the symbols <=, followed by a list of identifiers. These identi-
fiers may be of any type, but are typically either qubits or constructed data types with qubit
elements, such as a List (Qubit). Additionally, any identifier may be preceeded by a tilde (˜) to
indicate 0−control. The default is 1−control.

The identifiers that are controlling a statement can not be used in the statement. Control-
ling identifiers are exempt from linearity constraints in that they remain in scope after the
quantum control construction.

The effect of the control statement is that all qubits in the control list, or contained in items
in that list are used to control all unitary transformations done in the controlled statement.

1.3.9 Divergence

To force the execution of a program to diverge, you can use the zero statement. This will set
the probability of the values of a program to 0, and is interpreted as non-termination.

1.3.10 Discard

In some algorithms, such as in recursive functions when they process the initial cases of con-
structed data, the algorithm does not specify any action. In these cases, the programmer may
need to examine the requirements of linearity with respect to any passed in parameters. Of-
ten, these will need to be explicitly discarded in base cases of such algorithms. This is done
via the discard statement. An example may be seen in figure 4.30 on page 66.

1.4 L-QPL expressions

Expressions in L-QPL are used in many of the statements discussed in section 1.3 on page 9.
The four basic types of expressions are identifiers, constants, constructor expressions, and
calling expressions. Arithmetic and logical combinations of classical constants and classical
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identifiers are allowed. As well, constructor and calling expressions often take lists of other
expressions as arguments.

1.4.1 Constant expressions

The possible constant expressions in L-QPL are shown in table 1.2. The category column
in this table contains the word “Classical” when the constant may be used in arithmetic or
Boolean expressions.

Expression Type Category

integer Int Classical

true Bool Classical

false Bool Classical

|0〉 Qubit Quantum

|1〉 Qubit Quantum

Table 1.2: Allowed constant expressions in L-QPL

1.4.2 Identifier expressions

These expressions are just the identifier name. While an identifier may be used wherever an
expression is expected, the reverse is not true. As an example, in function calls, any of the
input arguments may be expressions but the output arguments must be identifiers.

Identifier expressionsmay be either quantum or classical in nature. As discussed in sub-section 1.3.1
on page 10, an identifier is first created by an assignment statement. When initially created,
the identifier is always quantum. Using it where a classical expression is required will result
in an error. When it is desired to operate on an identifier classically, it must first be the object
of a use statement. In all statements in the scope of that use statement the identifier will be
considered classical. See sub-section 1.3.5 on page 14 for further information and examples.

1.4.3 Constructor expressions

These expressions are used to create new instances of declared data types. Consider this
sample fragment of code.

1 qdata TTree a = { Tip | Br ( TTree ( a ) , a , TTree ( a ) ) | Node( a ) }
2 qdata L i s t a = {Nil | Cons ( a , L i s t ( a ) ) }
3

4 qbtree = Br ( Tip , |1> , Br (Node(|0>) , |1> , Node(|1> ) ) ) ;
5 i n t l i s t = reverse (Cons ( 5 , Cons ( 4 , Cons ( 3 , Cons ( 2 , Cons ( 1 , Nil ) ) ) ) ) ) ;
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These statements create a tree as in figure 1.12 and the list [1, 2, 3, 4, 5]. Compare the logical
representation of qbtree as in figure 1.12 versus how it is stored in the quantum stack machine,
shown in figure 1.13. The assignment statement which creates qbtree uses five constructor

qbtree= |1>

|1>

|1>

|0>

Figure 1.12: Pictorial representation of qbtree

Figure 1.13: Quantum stack contents after creation of qbtree

expressions. The second assignment statement, which creates intlist uses six constructor ex-
pressions and one function expression.

Constructor expressions either have no arguments (e.g. Tip, Nil above), or require a paren-
thesized list of expressions which agree in both number and type with the template supplied
at the declaration of the type. These expressions are unrestricted otherwise. They may be con-
stants, identifiers, other constructor expressions, expression calls or compound expressions.
Any expressions that are classical in nature, such as constants, are upgraded to quantum au-
tomatically.
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1.4.4 Function expressions

When a function returns a single value, it may be used in a function expression. The bottom
two lines of listing below shows two examples of function expressions.

1 f : : ( c1 : Int , c2 : Int , c3 : Int | q1 : Qubit , i 1 : Int ; out : Qubit )
2 = { . . . }
3 . . .
4 qout = f ( c1 , c2 , c3 | q1 , i 2 ) ;
5 q l i s t = Cons ( f ( 1 , 2 , 3 | qout , 5 ) , Nil ) ;

In the first function expression, f is the right hand side of an assignment statement. The
assignment statement creates the variable qout with the value returned by the function.

In the second function expression, f is the first argument of a constructor expression which
will create a one element List (Qubit). The constructor expression is part of an assignment
statement which creates the variable qlist and sets it to the one element list. Note that due to
linearity, the variable qout is no longer available after the second function expression.

A function expression is always a quantum expression, so it may only be used in those
places where quantum expressions are allowed. Nesting of these calls inside constructor ex-
pressions, other function expressions and function calls is allowed.

1 qdata L i s t a = {Nil | Cons ( a , L i s t ( a ) ) }
2

3 append : : ( l i s t 1 : L i s t ( a ) , l i s t 2 : L i s t ( a ) ; appendList : L i s t ( a ) )=
4 { case l i s t 1 of
5 Nil => { appendList = l i s t 2 }
6 Cons (hd , t a i l ) =>

7 { appendList = Cons (hd , append ( t a i l , l i s t 2 ) ) }
8 }

Figure 1.14: L-QPL code for appending two lists

In figure 1.14, line 7 shows the append being used as a function expression inside of a con-
structor expression.
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Chapter 2

BNF description of the Linear Quantum
Programming Language

2.1 Program definition

L-QPL programs consist of a series of definitions at the global level. These are either data
definitionswhich give a description of an algebraic data type procedure definitionswhich define
executable code.

<Linearqplprogram> :: <global definitions>

<global_definitions> :: <global_definitions> <global_definition>
| empty

<global_definition> :: <data_definition>
| <procedure_definition>

2.2 Data definition

A data definition consists of declaring a type name, with an optional list of type variables and
a list of constructors for that type. It is a semantic error to have different types having the
same constructor name, or to redeclare a type name.

Constructor definitions allow either fixed types or uses of the type variables mentioned in
the type declaration.

<data_definition> :: <type_definition> ’=’
’{’ <constructor_list> ’}’

<type_definition> :: ’type’ <constructorid> <id_list>

<constructor_list>:: <constructor> <more_constructor_list>

<more_constructor_list> ::
’|’ <constructor> <more_constructor_list>
| {- empty -}
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<constructor> :: <constructorid> ’(’ <typevar_list> ’)’
| <constructorid>

<typevar_list> :: <typevar> <moretypevar_list>

<moretypevar_list> :: ’,’ typevar moretypevar_list
| {- empty -}

<typevar> :: <identifier>
| <identifier>
| <constructor>
| <constructor> ’(’ <typevar_list> ’)’
| <builtintype>

<builtintype>:: ’Qubit’ | ’Int’ | ’Bool’

2.3 Procedure definition

Procedures may only be defined at the global level in a L-QPL program. The definition con-
sists of a procedure name, its input and output formal parameters and a body of code. Note
that a procedure may have either no input, no outputs or neither.

The classical and quantum inputs are separated by a ’|’. Definitions with either no pa-
rameters or no classical parameters are specific special cases.

<procedure_definition> :: <identifier> ’::’
’(’ <parameter_definitions> ’|’

<parameter_definitions> ’;’
<parameter_definitions> ’)’

’=’ <block>
| <identifier> ’::’

’(’ <parameter_definitions> ’;’
<parameter_definitions> ’)’

’=’ <block>
| <identifier> ’::’ ’(’ ’)’ ’=’ <block>

<parameter_definitions> :: <parameter_definition>
<more_parameter_definitions>

| {- empty -}

<more_parameter_definitions> :: ’,’ <parameter_definition>
<more_parameter_definitions>

| {- empty -}

<parameter_definition> :: <identifier> ’:’ <constructorid>
’(’ <typevar_list> ’)’

| <identifier> ’:’ <constructorid>
| <identifier> ’:’ <builtintype>
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2.4 Statements

Although L-QPL is a functional language, the language retains the concept of statementswhich
provide an execution flow for the program.

The valid collections of statements are blockswhich are lists of statements.

<block> :: ’{’ <stmtlist> ’}’

<stmtlist>:: <stmtlist> ’;’ <stmt>
| <stmtlist> ’;’
| <stmt>
| {- empty -}

Statements are broadly grouped into a few classes.

2.4.1 Assignment

Variables are created by assigning to them. There is no ability to separately declare them.
Type unification will determine the appropriate type for the variable.

<stmt> :: <identifier> ’=’ <exp>

2.4.2 Case statements

These are measure, case, use, discard and the classical assign, :=. These statements give the pro-
grammer the capability to specify different processing on the sub-stacks of a quantum vari-
able. This is done with dependant statements. For measure and case, the dependent statements
are in the block specified in the statement. For use, they may be specified explicitly, or they
may be all the statements following the use to the end of the enclosing block. The classi-
cal assign is syntactic sugar for an assignment followed by a use with no explicit dependent
statements.

The discard statement is grouped here due to the quantum effects. Doing a discard of a
qubit is equivalent to measuring the qubit and ignoring the results. This same pattern is
followed for discarding quantum variables of all types.

(<stmt> continued)
| ’case’ <exp> ’of’ <cases>
| ’measure’ <exp> ’of’ <zeroalt> <onealt>
| <identifier> ’:=’ <exp>
| ’use’ <identifier_list> <block>
| ’use’ <identifier_list>

2.4.3 Functions

This category includes procedures and transforms. A variety of calling syntax is available,
however, there are no semantic differences between them.
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(<stmt> continued)
| ’(’ <identifier_list> ’) ’=’

<callable> ’(’ <exp_list> ’)’
| ’(’ <identifier_list> ’) ’=’

<callable> ’(’ <exp_list> ’|’ <exp_list> ’)’
| <callable> <ids>
| <callable> ’(’ <exp_list> ’)’ <ids>
| <callable> ’(’ <exp_list> ’|’ <exp_list> ’;’

<ids> ’)’

2.4.4 Blocks

The block statement allows grouping of a series of statements by enclosing them with { and }.
An empty statement is also valid.

(<stmt> continued)
| <block>
| {- empty -}

2.4.5 Control

L-QPL provides a statement for classical control and one for quantum control. Note that
quantum control affects only the semantics of any transformations applied within the control.
Classical control requires the expressions in its guards (see below) to be classical and not
quantum.

(<stmt> continued)
| ’if’ guards
| <stmt> ’<=’ <control_list>

2.4.6 Divergence

This signifies that this portion of the program does not terminate. Statements after this will
have no effect.

(<stmt> continued)
| ’zero’

2.5 Parts of statements

The portions of statements are explained below. First is callable which can be either a proce-
dure name or a particular unitary transformation.

<callable> :: <identifer> | <transform>

The alternatives of a measure statement consist of choice indicators for the base of the
measure followed by a block of statements.
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<zeroalt> :: ’|0>’ ’=>’ <block>

<onealt> :: ’|1>’ ’=>’ <block>

The if statement requires a list of guards following it. Each guard is composed of a classical
expression that will evaluate to true or false , followed by a block of guarded statements. The
statements guarded by the expression will be executed only when the expression in the guard
is true. The list of guards must end with a default guard called else. Semantically, this is
equivalent to putting a guard of true.

<guards> :: <freeguards> <owguard>

<freeguards> :: <freeguard> <freeguards>
| {- empty -}

<freeguard> :: <exp> ’=>’ <block>

<owguard> :: ’else’ ’=>’ <block>

When deconstructing a data type with a case statement, a pattern match is used to deter-
mine which set of dependent statements are executed. The patterns allow the programmer
to either throw away the data element (using the ’_’ special pattern), or assign it to a new
identifier.

<cases> :: <case> <more_cases>

<more_cases> :: {- empty -}
| <case> <more_cases>

<case> :: <caseclause> ’=>’ <block>

<caseclause> :: <constructorid> ’(’ <pattern_list> ’)’
| <constructorid>

<pattern_list>:: <pattern> <more_patterns>

<more_patterns> :: ’,’ <pattern> <more_patterns>
| {- empty -}

<pattern> :: <identifier> | ’_’

2.6 Expressions

L-QPL provides standard expressions, with the restriction that arithmetic expressions may be
done only on classical values. That is, they must be on the classical stack or a constant.

The results of comparisons are Boolean values that will be held on the classical stack.

<exp>:: <exp0>
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<exp0>:: <exp0> <or_op> <exp1> | <exp1>

<exp1>:: <exp1> ’&&’ <exp2> | <exp2>

<exp2>:: ’~’ <exp2> | <exp3> | <exp3> <compare_op> <exp3>

<exp3>:: <exp3> <add_op> <exp4> | <exp4>

<exp4>:: <exp4> <mul_op> <exp5> | <exp5>

<exp5>:: <exp5> <shift_op> <exp6> | <exp6>

<exp6>:: <identifier> | <number> | ’true’ | ’false’
| ’(’ <exp> ’)’
| <constructorid> ’(’ <exp_list> ’)’
| <constructorid>
| <identifier> ’(’ ’)’
| <identifier> ’(’ <exp_list> ’)’
| <identifier> ’(’ <exp_list> ’;’ ids ’)’
| ’|0>’ | ’|1>’

<exp_list>:: <exp> <more_exp_list>

<more_exp_list>:: ’,’ <exp> <more_exp_list>
| {- empty -}

2.7 Miscellaneous and lexical

These are the basic elements of the language as used above. Many of these items are differen-
tiated at the lexing stage of the compiler.

<idlist> :: <identifier> more_ids
| {- empty -}

<more_ids> :: <identifier> more_ids
| {- empty -}

<control_list>:: <control> <more_control_list>

<more_control_list>:: ’,’ <control> <more_control_list>
| {- empty -}

<control>:: <identifer> | ’~’ <identifer>

<opt_identifier_list>:: <identifier_list>
| {- empty -}

<identifier_list>:: <identifier> <more_idlist>

<more_idlist>:: ’,’ <identifier> <more_idlist>
| {- empty -}
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<or_op>:: ’||’ | ’^’

<compare_op>:: ’==’ | ’<’ | ’>’ | ’=<’ | ’>=’ | ’=/=’

<add_op>::’+’ | ’-’

<mul_op>::’*’ | ’div’ | ’rem’

<shift_op>::’>>’ | ’<<’

<transform>:: <gate>
| <transform> *o* transform

<gate> :: ’Had’ | ’T’ | ’Phase’ | ’Not’ | ’RhoX’
| ’Swap’ | ’Rot ’| ’RhoY ’ | ’ RhoZ ’ | ’Inv-’<gate>

<identifier> :: <lower> | <identifier><letterOrDigit>
<constructorid :: <upper> | <constructorid><letterOrDigit>
<letterOrDigit> :: <upper>|<lower>|<digit>
<number> :: [’+’|’-’] <digit>+
<lower> :: ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’

| ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’
| ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’
| ’x’ | ’y’ | ’z’

<upper> :: ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’
| ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’
| ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’
| ’X’ | ’Y’ | ’Z’

<digit> :: ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’
| ’7’ | ’8’ | ’9’
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Chapter 3

Quantum stack machine additional details

3.1 Instructions

Creation of reasonable set of instructions, balancing brevity and usefulness has been an inter-
esting task. The list of instructions and brief descriptions of them are presented in table 3.1.
The transitions of these are presented formally in appendix A.4 on page 82.

Table 3.1: QSM instruction list

Instruction Arguments Description

QLoad nm:Name,
k::qubit

Creates qubit named nm and sets the value to |k〉.

QMove nm:Name Creates an integer or Boolean named nm and sets
its value to the top of the classical stack.

QCons nm:Name,
c::constructor

Creates a data type element with the value c. Note
that if the constructor requires sub-elements, this
will need to be followed by QBind instructions.

QBind nm:Name Binds the node [nm] to the data element currently
on the top of the stack.

QDelete ∅ Deletes the top node and any bound nodes in the
quantum stack.

QDiscard ∅ Discards the node on top of the quantum stack.

QUnbind nm:Name Unbinds the first bound node from the data ele-
ment at the top of the stack and assigns it as nm.

QPullup nm::name Pulls the node named nm to the top of the quantum
stack.

Continued on next page
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Instruction Arguments Description

QName nm1::name,
nm2::name

Renames the node named nm1 to nm2.

AddCtrl ∅ Marks the start of a control point in the control
stack. Any following QCtrl instructions will add
the top node to this control point.

QCtrl ∅ Moves the top element of the quantum stack to
the control stack. Recursively moves any bound
nodes to the control stack when the element is a
constructed data type.

UnCtrl ∅ Moves all items in the control stack at the current
control point back to the quantum stack.

QApply i::Int,t:Transform Parametrizes the transform T with the top i ele-
ments of the classical stack and applies it to the
quantum stack.

Measure l0::Label,
l1::Label

Measures the qubit on top of the quantum stack
and sets up the dump for execution of the code at
l0 for the 00 sub-branch and the code at l1 for the
11 sub-branch.

Split cls::[(constructor,
Label)]

Splits the data node at the top of the quantum stack
and sets up the dump for execution of the code at
the i-th label for the i-th sub-branch.

Use lbl::Label Uses the classical (integer or Boolean) node on top
of the quantum stack and sets up the dump to for
execution of the code at lbl for each of the sub-
branches.

EndQC ∅ Merges the current quantum stack with the results
stack of the dump, activates the next partial stack
to be processed and jumps to the code at the cor-
responding label. When there are no more par-
tial stacks, the instruction merges the current stack
with the the results stack and sets that as the new
quantum stack.

Continued on next page
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Instruction Arguments Description

Call i::Int,
ep::EntryPoint

For the first element of the infinite list of states, sets
the values at the leaves of the quantum stack to 0.
For the remainder of the list, the instruction jumps
to the subroutine at ep, saving the return location
and classical stack on the dump. It copies the top i
elements of the classical stack for the subroutine.

Return i::Int Restores the location and classical stack from the
dump, copies the top i items of the current classical
stack to the top of the restored classical stack.

Jump lbl::Label Jumps forward to the label lbl.

CondJump lbl::Label If the top of the classical stack is the value false,
jumps forward to the label lbl.

NoOp ∅ Does nothing.
CGet i::Int Copies the i-th element of the classical stack to the

top of the classical stack. A negative value for i
indicates the instruction should copy the |i|th value
from the bottom of the classical stack.

CPut i::Int Copies the top of the classical stack to the i-th el-
ement of the classical stack. A negative value for
i indicates the instruction should place the value
into the |i|th location from the bottom of the classi-
cal stack.

CPop ∅ Pops off (and discards) the top element of the clas-
sical stack.

CLoad v::Either Int Bool Pushes v onto the classical stack.

CApply op::Classical Op Applies op to the top elements of the classical stack,
replacing them with the result of the operation.

3.2 Translation of L-QPL to stack machine code

This section will discuss the code produced by the various statements and expressions in an
L-QPL program. An L-QPL program consists of a collection of data definitions and proce-
dures. Data definitions do not generate any direct code but do affect the code generation of
statements and expressions.

Each procedure will generate code. A procedure consists of a collection of statements each
of which will generate code. Some statements may have other statements of expressions as
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dependent pieces, which again will generate code.
The code generation in the compiler, and the description here, follows a standard recursive

descent method.

3.2.1 Code generation of procedures

The code generated for each procedure follows a standard pattern of: procedure entry; proce-
dure statements; procedure exit. The procedure statements portion is the code generated for
the list of statements of the procedure, each of which is detailed in sub-section 3.2.2.

Procedure entry

Each procedure is identified in QSM by an entry point, using an assembler directive. This
directive is a mangled name of the procedure, followed by the keyword Start. The only
exception to this is the special procedure main which is generated without mangling. main
is always the starting entry point for a QSM program.

Procedure exit

The end of all procedures is denoted by another assembler directive, EndProc. For all pro-
cedures except main, the code generation determines how many classical variables are being
returned by the procedure and emits a Return n instruction, where n is that count1.

Procedure body

The code for each statement in the list of statements is generated and used as the body of the
procedure. As an example, see the coin flip code and the corresponding generated QSM code
in figure 3.1 on the next page.

3.2.2 Code generation of statements

Each statement in L-QPL generates code. The details of the code generation for each statement
are given in the following pages, together with examples of actual generated code.

Assignment statements

The sub-section describes code generation for quantum assignment statements and assign-
ments to variables on the classical stack. The classical assignment (:=) statement is described
with the use statement below, as it is syntactic sugar for that statement.

An assignment of the form i = 〈expr〉 is actually broken down into 5 special cases. The
first is when the left hand side is an in-scope variable that is on the classical stack. The other
four all deal with the case of a quantum variable, which is either introduced or overwritten.
The four cases depend on the type of expression on the right hand side. Each paragraph

1This functionality is currently not available in L-QPL, but may be re-introduced at a later date.
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1 qdata Coin = {Heads | Ta i l s }
2 c f l i p : : ( ; c : Coin ) =

3 { q = |0> ;
4 Had q ;
5 measure q of
6 |0> => { c = Heads }
7 |1> => { c = Ta i l s }
8 }
9 main : : ( ) =

10 { c = c f l i p ( ) }

(a) Coin flip code

1 CFl ip_ f cd lb l0 S t a r t
2 QLoad q |0>
3 QApply 0 !Had
4 Measure l 0 l 1
5 Jump l3
6 l 0 QDiscard
7 QCons b # Fa l se
8 EndQC
9 l 1 QDiscard
10 QCons b #True
11 EndQC
12 l 3 QPullup b
13 Return 0
14 EndProc
15

16 main S t a r t
17 Cal l 0 CF l ip_ f cd lb l0
18 NoOp
19 EndProc

(b) Generated code

Figure 3.1: L-QPL and QSM coin flip programs

below will identify which case is being considered and then describe the code generation for
that case.

Left hand side is a classical variable. In this case, generate the code for the expression on
the right hand side (which will be classical in nature). This leaves the expression value at the
top of the classical stack. Now, emit a CPut instruction which will copy that value into the
location of the classical variable.

1 i = 5 ;
=⇒

1 CLoad 5
2 CPut −2

Right hand side is a classical expression. First, generate the expression code, which leaves
the value on the top of the classical stack. Then emit a QMove instruction with the name of
the left hand side. This will create a new classical node, which will be set to the value of the
top of the classical stack.

1 i = 5 ;
=⇒

1 CLoad 5
2 QMove i
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Right hand side is a constant qubit. Emit the QLoad instruction with the qubit value and
the left hand side variable name.

1 q = |1> ; =⇒ 1 QLoad q |1>

Right hand side is an expression call. First, emit the code for the expression call. This will
leave the result quantum value on the top of the quantum stack. If the formal name given
by the procedure definition is the same as the left hand side name, do nothing else, as the
variable is already created with the proper name. If not, emit a QName instruction to rename
the last formal parameter name to the left hand side name.

1 random : : ( maxval : Int ;
2 rand : Int ) =

{ . . . }
3 . . .
4 x = random ( 1 5 ) ;

=⇒ 1 CLoad 15
2 QMove c18
3 QName c18 maxval // In
4 Cal l 0 random_fcdlbl0
5 QName rand x //Out

Right hand side is some other expression. Generate the code for the expression. Check the
name on the top of the stack. If it is the same as the left hand side name, do nothing else,
otherwise emit a QName instruction.

1 outqs = Cons (q , inqs ’ ) ; =⇒ 1 QCons c4 #Cons
2 QBind inqs ’
3 QBind q
4 QName c4 outqs

Measurement code generation

Measurement will always have two subordinate sets of statements, respectively for the |0〉
and |1〉 cases. The generation for the actual statement will handle the requisite branching.

The code generation first acquires three new labels, m0,m1 and mf. It will then emit a
Measurem0 m1 statement, followed by a Jumpmf. Recall from the transitions in appendix A.4.1
on page 82 that when the machine executes the Measure instruction, it then generates and ex-
ecutes a EndQC instruction. The Jump will be executed when all branches of the qubit have
been executed.

Then, for each of the two sub blocks (i ∈ {0, 1}), I emit a Discard labelled with mi. This is
followed by the code generated from the corresponding block of statements. Finally a EndQC
is emitted.

The last instruction generated is a NoOpwhich is labelled with mf.
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1 measure q of
2 |0> => { n1 = 0 }
3 |1> => { n1 = 1 } ;

=⇒ 1 QPullup q
2 Measure l 7 l 8
3 Jump l9
4 l 7 QDiscard
5 CLoad 0
6 QMove n1
7 EndQC
8 l 8 QDiscard
9 CLoad 1
10 QMove n1
11 EndQC
12 l 9 NoOp

Case statement code generation

Case statement generation is conceptually similar to that of measurement. The differences are
primarily due to the variable number of case clauses and the need to instantiate the variables
of the patterns on the case clauses.

As before, the expression will have its code generated first. Then, the compiler will use a
function to return a list of triples of a constructor, its generated label and the corresponding
code for each of the case clauses. The code generation done by that function is detailed below.

At this point, the code generation resembles measurement generation. The compiler gen-
erates a label cf and emits a Split with a list of constructor / code label pairs which have
been returned by the case clause generation. This is followed by emitting a Jump cf. After the
Jump has been emitted, the code generated by the case clause generation is emitted.

The final instruction generated is a NoOpwhich is labelled with cf.

Case clause code generation. The code generation for a case clause has a rather complex
prologue which ensures the assignment of any bound variables to the patterns in the clause.

First, the code generator gets a new label cl and then calculates the unbinding code as
follows: For each don’t care pattern in the clause, code is generated to delete the corresponding
bound node. This is done by first getting a new stack name nm, then adding the instructions
QUnbind nm, Pullup nm and QDelete nm. This accomplishes the unbinding of that node
and removes it from the quantum stack. Note that QDelete is used here to ensure that all
subordinate nodes are removed and that no spurious data is added to the classical stack in
the case of the don’t care node being a classical value.

For each named pattern p, only the instruction QUnbind p is added.
The program now has a list of instructions that will accomplish unbinding of the variables.

Note this list may be empty, e.g., the Nil constructor for List.
The clause generation now creates its own return list. When the unbinding list is not

empty, these instructions are added first, with the first one of them being labelled with cl.This
is followed by a Discard which discards the decomposed data node. When the unbind list
is empty, the first instruction is the Discard labelled by cl.
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Then, the code generated by the statements in the case clause block are added to the list.
Finally, a EndQC is added at the end.

The lists from all the case clauses are combined and this is returned to the case code gen-
eration.

The example at the end of the use clause will illustrate both the case clause and the use
statement code generation.

Use and classical assign code generation

As described earlier in sub-section 1.3.5 on page 14, the classical assignment, v := exp is syn-
tactic sugar for a variable assignment followed by a use statement. The code generation for
each is handled the same way.

There are two different cases to considerwhen generating this code. The use statementmay
or may not have subordinate statements. In the case where it does not have any subordinate
statements, (a classical assign or a use with no block), the scope of the classical variables in
the use extends to the end of the enclosing block.

The case of a use with a subordinate block is presented first.

Use with subordinate block code generation. While similar to the generation for the mea-
sure and case statements, there are differences. The two main differences are that there is only
one subordinate body of statements and that multiple variables may be used.

In the case where there is a single use variable nu, the generator gets the body label ub and
end label ue. It then emits a Pullup nu, a Use ub and a Jump ue. This is followed by emitting
a Discard labelled by ub and the code generated by the subordinate body of statements and
a EndQC instruction. This is terminated by a NoOp labelled by ue.

When there aremultiple namesn1,n2, . . . ,nj, the generator first recursively generates code
assuming the same body of statements but with a use statement that only has the variables
n2, . . . ,nj. This is then used as the body of code for a use statement with only one variable n1,
which is generated in the same manner as in the above paragraph.

Usewith no subordinate block. To properly generate the code for this, including the EndQC
and end label, the generator uses the concept of delayed code. The prologue (Use, Jump
and Discard) and epilogue (EndQC, NoOp) are created in the same manner as the use with
the subordinate block. The prologue is emitted at the time of its generation. The epilogue,
however, is added to a push-down stack of delayed code which is emitted at the end of a
block. See the description of the block code generation for more details on this. These items
are illustrated in figure 3.2 on the facing page.

Conditional statements

The if ... else statement allows the programmer to specify an unlimited number of classical
expressions to control blocks of code. Typically, this is done within a use statement based
upon the variables used.
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1 case l of
2 Nil => { i = 0 }
3 Cons ( _ , l 1 ) => {
4 n= len ( l 1 ) ;
5 use n ;
6 i = 1 + n ;
7 }

=⇒ 1 Sp l i t (# Nil , l 0 ) (#Cons , l 1 )
2 Jump l4
3 l 0 QDiscard
4 CLoad 0
5 QMove i
6 EndQC
7 l 1 QUnbind c0
8 QUnbind l1
9 QDiscard
10 QPullup c0
11 QDiscard
12 QPullup l1
13 QName l1 l
14 Cal l 0 l en_ f cd l 0
15 QName i n
16 QPullup n
17 Use l2
18 Jump l3
19 l 2 QDiscard
20 CLoad 1
21 CGet 0
22 CApply +

23 QMove i
24 EndQC //For Use
25 l 3 NoOp
26 EndQC //For Sp l i t
27 l 4 NoOp

Figure 3.2: QSM code generated for a case and use statement.
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The statement code generation is done by first requesting a new label, ge. This label is used
in the next step, generating the code for all of the guard clauses. The generation is completed
by emitting a NoOp instruction labelled by ge.

Guard clauses. Each guard clause consists of an expression and list of statements. The code
generator first emits the code to evaluate the expression. Then, a new label gl is requested
and the instruction CondJump gl is emitted. The subordinate statements are generated and
emitted, considering them as a single block. The concluding instruction is a Jump ge.

At this point, if there are no more guard clauses, a NoOp instruction, labelled by gl is
emitted, otherwise the code generated by the remaining guard clauses is labelled by gl and
emitted.

1 i f b == 0 => {
2 theGcd = a ;
3 } e l se => {
4 ( theGcd ) =

5 gcd (b , a mod b ) ;
6 }

=⇒ 1 CGet −2
2 CLoad 0
3 CApply ==

4 CondJump lb l 2
5 CGet −1
6 QMove theGcd
7 Jump lb l 1
8 l b l 2 CLoad True // else
9 CondJump lb l 3
10 CGet −1
11 CGet −2
12 CApply %
13 QMove c0
14 CGet −2
15 QMove c1
16 QName c1 a
17 QName c0 b
18 Cal l 0 gcd_fcdlb l0
19 Jump lb l 1
20 l b l 3 NoOp
21 l b l 1 NoOp

Function calling and unitary transforms

The code generation of these two statements is practically the same, with the only difference
being that built in transformations have a special instruction in QSM, while executing a de-
fined function requires the Call instruction.

In each case, the statement allows for input classical and quantum expressions and output
quantum identifiers.

The first step is the generation of the code for the input classical expressions. These are
generated in reverse order so that the first parameter is on the top of the classical stack, the
second is next and so forth. Then, the input quantum expressions are generated, with names
of these expressions being saved. Note that it is possible to use expressions which are innately
classical (e.g., constants and variables on the classical stack) as a quantum expression. The
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compiler will generate the code needed to lift it to a quantum expression. See sub-section 3.2.4
on page 43 for the details.

At this stage, the two types differ slightly. For the unitary transformation case, the code
“QApply n !t” is emitted, where n is the number of classical arguments and t is the name
of the built in transform. The exclamation mark is part of the QSM assembler syntax for
transform names. In a defined function, renames of the input quantum expressions to the
names of the input formal ids are generated, by emitting a series of QName instructions. This
is followed by emitting a Call n f, where n is again the number of classical arguments and f

is the internally generated name of the function.
In both cases, the code checks the formal return parameter names against the list of return

value names. For each one that is different, a QName frml retnm is emitted.
See the previous code list between the CondJump lbl3 and lbl3 NoOp for an example

of this.

3.2.3 Code generation of expressions

In the previous sub-section, a number of examples of code generation were given. These
also illustrated most of the different aspects of expression code generation. A few additional
examples are given below.

Generation of constants

There are three possible types of constants, a Boolean, an integer or a qubit. Note that con-
structors are considered a different class of expression.

For both Boolean and integers, the compiler emits a CLoad val instruction. For a qubit, it
creates a new name q and emits a QLoad q qbv instruction.

Examples of these may be seen in the sub-sub-section on assignments.

Generation of classical arithmetic and Boolean expressions

In all cases, these types of expressions are calculated solely on the classical stack. Whenever
the generator encounters an expression of the form

e1 op e2

it first emits the code to generate e2, followed by the code to generate e1. This will leave the
result of e1 on top of the stack with e2’s value right below it. It then emits the instruction
CApply op, which will apply the operation to the two top elements, replacing them with the
result.

The Boolean not operation is the only operation of arity 1. Code generation is done in the
same manner. The generator emits code for the expression first, followed by CApply ¬.

See under Guard clauses, sub-section 3.2.2 on the facing page for examples.

Generation of variables

The semantic analysis of the program will split this into two cases; classical variables and
quantum variables. Each are handled differently.
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Classical variables. These variables are on the classical stack at a specific offset. The use of
them in an expression means that they are to be copied to the top of the classical stack. The
code emitted is CGet offset, where offset is the offset of the variable in the classical stack.

Quantum variables. In this case, the variables are at a specific address of the quantum stack.
These variables are not allowed to be copied, so the effect of this code is to rotate the quantum
stack until the desired variable is at the top. The other consideration is that these variables
have a linearity implicitly defined in their usage. In the compiler, this is handled by the
semantic analysis phase, but the code generation needs to also consider this. The compiler
will add this variable to a delayed deletion list. After completion of the statement with this
variable expression, the variable will be deleted unless:

• The statement has deleted it. (Measure of a qubit, for example, will directly generate the
deletion code.)

• It is recreated as the result of an assignment, function call or transformation.

Code generation for expression calls

Each expression call is generated in substantially the sameway as the code for a call statement
as in sub-section 3.2.2. The only difference is that the name of the final return variable will
not be known and is therefore set to the same name as the name of the last output formal
parameter. As an example, consider:

1 gcd : : ( a : Int , b : Int ; theGcd : Int )=
2 { use a , b in
3 { i f b == 0 => { theGcd = a }
4 else => { ( theGcd ) = gcd (b , a mod b ) }
5 }
6 }

Suppose this is defined in a program, and at some point, it is called as an expression in
the program : gcd(5,n). The code generated for this expression will then leave the integer node
named theGcd on the top of the quantum stack.

Generation of constructor expressions

These expressions are used to create new data type nodes, such as lists, trees etc. Construc-
tors are similar to functions in that they expect an expression list as input and will return a
new quantum variable of a specific type. In L-QPL they are somewhat simpler as the input
expressions are all expected to be quantum and there is a single input only. Just as in function
calls, any classical expressions input to the constructor will be lifted to a quantum expression.

The first step is for the compiler to emit code that will evaluate and lift any of the input
expressions. The names of each of these expressions is saved. Then, it creates a new name dc

and emits the code QCons dc #cid.
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The final stage is to emit a QBind nmei
for each of the input expression, in reverse order to

what was input. The next example illustrates this.

1 l t = Cons (|0> ,
2 Cons (|0> ,
3 iTZQList (2×n ) ) ) ;

=⇒ 1 QLoad c22 |0>
2 QLoad c23 |0>
3 CLoad 2 // f o r the c a l l
4 CGet −1
5 CApply ×
6 QMove c24
7 QName c24 n
8 Cal l 0 iTZQLis t_ fcd lb l5
9 QCons c25 #Cons
10 QBind nq
11 QBind c23 // c23 : nq
12 QCons c26 #Cons
13 QBind c25
14 QBind c22 // c22 : c23 : nq
15 QName c26 l t

3.2.4 Lifting of classical expressions to quantum expressions.

When the compiler requires a quantum expression, but has been given a classical one, it
first generates the classical expression. This leaves the expression value on top of the clas-
sical stack. The compiler will now generate a new unique name lc and emit the instruction
QMove lc. This now moves the value from the classical stack to the quantum stack.
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Chapter 4

Example L-QPL programs

4.1 Basic examples

This section covers a number of the standard examples of quantum algorithms covered in
most introductions to the subject.

4.1.1 Quantum teleportation function

The L-QPL program shown in figure 4.2 on the next page is an implementation of a function
that will accomplish quantum teleportation as per the circuit shown in figure 4.1. (See also
[Wat] or [NC00]). It also provides a separate function to place two qubits into the EPR state.

|ν〉 • H :=;<M1d = [let@tokeneifnch•

A ��������d = [let@tokeneifnch:=;<M2 •

Bd = [let@tokeneifnchd = [let@tokeneifnchd = [let@tokeneifnchX Zd = [let@tokeneifnch|ν〉
|s1〉 |s2〉 |s3〉 |s4〉

Figure 4.1: Quantum teleportation

Note that the teleport function, similarly to the circuit, does not check the precondition
that qubits a and b are in the EPR state, which is required to actually have teleportation work.

4.1.2 Quantum Fourier transform

The L-QPL program to implement the quantum Fourier transform in figure 4.3 on the next
page uses two recursive routines, qft and rotate. These functions assume the qubits to trans-
form are in a List. (See also [Sel04] and either [Wat] or [NC00]).

The routine qft first applies the Hadamard transform to the qubit at the head of the list,
then uses the rotate routine to recursively apply the correct Rot transforms controlled by the
other qubits in the list. qft then recursively calls itself on the remaining qubits in the list.
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1 prepare : : ( ; a : Qubit , b : Qubit )=
2 { a = |0> ; b = |0> ;
3 Had a ;
4 Not b ⇐ a ;
5 }
6 t e l epo r t : : ( n : Qubit , a : Qubit , b : Qubit ; b : Qubit ) =

7 { Not a ⇐ n ;
8 Had n ;
9 measure a of
10 |0> => { } |1> => {Not b } ;
11 measure n of
12 |0> => { } |1> => {RhoZ b }
13 }

Figure 4.2: L-QPL code for a teleport routine

1 #Import Prelude . qpl
2 r o t a t e : : ( n : Int | h : Qubit , qbsIn : L i s t (Qubit ) ;
3 h : Qubit , qbsOut : L i s t (Qubit ) )=
4 { case qbsIn of
5 Nil => { qbsOut = Nil }
6 Cons (hd , t l ) =>

7 { Rot ( n ) h ⇐ hd ;
8 r o t a t e (n+1) h t l ;
9 qbsOut = Cons (hd , t l ) }
10 }
11 q f t : : ( qsIn : L i s t (Qubit ) ; qsOut : L i s t (Qubit ) ) =

12 { case qsIn of
13 Nil => { l = Nil }
14 Cons (hd , t l ) =>

15 { Had hd ;
16 r o t a t e ( 2 ) hd t l ;
17 q f t t l ;
18 qsOut = Cons (hd , t l ) }
19 }

Figure 4.3: L-QPL code for a quantum Fourier transform
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4.1.3 Deutsch-Jozsa algorithm

The L-QPL program to implement the Deutsch-Jozsa algorithm is in figure 4.4 with support-
ing routines in figure 4.6, figure 4.5, figure 4.7. The hadList function is defined in figure 4.32 on
page 67.

The algorithm decides if a function is balanced or constant on n bits. This implementation
requires supplying the number of bits / qubits used by the function, so that the input can be
prepared. Additionally, it currently requires hand-writing the oracle for this function, shown
in figure 4.8. The oracle in this example is for a balanced function. (See also [Wat] or [NC00]).

The function dj creates an input list for the function, applies the Hadamard transform to
all the elements of that list and then applies the oracle. When that is completed, the initial
segment of the list is transformed again by Hadamard and then measured.

1 #Import i n i t L i s t . qpl
2 #Import prependnzeros . qpl
3 #Import hadList . qpl
4 #Import measureInps . qpl
5 #Import d j o r a c l e . qpl
6

7 dj : : ( s i z e : Int | ; resul tType : Ftype )=
8 { i n l i s t = prependNZeroqbs ( s i z e | |1> ) ;
9 hadList i n l i s t ;
10 d jo r a c l e i n l i s t ;
11 inputs = i n i t i a l L i s t ( i n l i s t ) ;
12 hadList inputs ;
13 resul tType = measureInputs ( inputs ) ;
14 }

Figure 4.4: L-QPL code for the Deutsch-Jozsa algorithm

The function prependNZeroqbs creates a list of qubits when given a length and the last value.
Assuming the parameters passed to the function were 3 and |1〉, this would return the list:

[|0〉 , |0〉 , |0〉 , |1〉]

1 #Import Prelude . qpl
2 prependNZeroqbs : : ( s i z e : Int | l a s t : Qubit ;
3 r e s u l t L i s t : L i s t (Qubit ) )=
4 { i f ( s i z e == 0) => { r e s u l t L i s t = Cons ( l a s t , Nil ) }
5 else => { l a s t ’ = addNZeroqbs ( s i z e − 1 | l a s t ) ;
6 r e s u l t L i s t = Cons (|0> , l a s t ’ ) }
7 }

Figure 4.5: L-QPL code to prepend n |0〉’s to a qubit

The initList function removes the last element of a list.
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1 #Import Prelude . qpl
2 i n i t i a l L i s t : : ( i n l i s t : L i s t ( a ) ; o u t l i s t : L i s t ( a ) ) =

3 { case i n l i s t of
4 Nil =>

5 { o u t l i s t = Nil }
6 Cons (hd , t a i l ) =>

7 { o u t l i s t = i n i t i a l (hd , t a i l ) }
8 }
9 i n i t i a l : : ( head : a , i n l i s t : L i s t ( a ) ;
10 o u t l i s t : L i s t ( a ) )=
11 { i n i t = i n i t i a l L i s t ( i n l i s t ) ;
12 o u t l i s t = Cons ( head , i n i t )
13 }

Figure 4.6: L-QPL code accessing initial part of list

1 #Import Prelude . qpl
2 qdata Ftype = { Balanced | Constant }
3 measureInputs : : ( inputs : L i s t (Qubit ) ; r e s u l t : Ftype ) =

4 { case inputs of
5 Nil => { r e su l t = Constant } //All were zero
6 Cons (hd , t a i l ) =>

7 { measure hd of
8 |0> => { r e su l t = measureInputs ( t a i l ) }
9 |1> => { r e su l t = Balanced } }
10 }

Figure 4.7: L-QPL code to measure a list of qubits
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The measureInputs function recursively measures the qubits in a list. If any of themmeasure
to 1, it returns the value Balanced. If all of them measure to 0, it returns the value Constant.

The oracle for the Deutsch-Jozsa algorithm is normally assumed to be a given. An actual
implementation such as this requires an actual function to be provided. The function djoracle

effects a transformation on the qubits in the input list by delegating to the function bal.

1 balanced : : ( c t l qb : Qubit , i n l i s t : L i s t (Qubit ) ;
2 c t l qb : Qubit , o u t l i s t : L i s t (Qubit ) )=
3 { case i n l i s t of
4 Nil => { o u t l i s t = Nil }
5 Cons (hd , t l ) =>

6 { case t l of
7 Nil => { Not hd ⇐ c t l qb ;
8 o u t l i s t = Cons (hd , Nil ) }
9 Cons (h , t ) =>

10 { balanced ( c t lqb , t ; c t lqb , out t ) ;
11 o u t l i s t = Cons (hd , Cons (h , out t ) ) } }
12 }
13 d jo r a c l e : : ( i n l : L i s t (Qubit ) ; ou t l : L i s t (Qubit ) )=
14 { case i n l of
15 Nil => { out l = Nil }
16 Cons (hd , t l )=> { balanced hd t l ;
17 out l = Cons (hd , t l ) }
18 }

Figure 4.8: L-QPL code for Deutsch-Jozsa oracle
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4.2 Hidden subgroup algorithms

The two algorithms presented in this section, the Grover search and Simons, are examples of
the hidden subgroup problem.

4.2.1 Grover search algorithm

The L-QPL program to implement the Grover search algorithm is in figure 4.9 with support-
ing routines in figure 4.11, figure 4.10, figure 4.12. The hadList function is defined in figure 4.32
on page 67 and the oracle for this implementation in figure 4.13 on page 52.

For a specific function f : bitn → bit, the algorithm probabalistically determines the solu-
tion to f(x) = 1. Classically, this would require 2n applications of f. The quantum algorithm
requires O(

√
2n) applications. For the algorithm, first define

Uf |x〉 = (−1)f(x) |x〉 and U0 |x〉 =

{

|x〉 if any x 6= 0

− |x〉 if x = 0n

then:

• Start with n zeroed qubits and apply Hadamard to them.

• Apply G = −H⊗nU0H
⊗nUf approximately

√
2n times.

• Measure the qubits, forming an integer and check the result.

In the implementation that follows, U0 is given by the function phase, Uf is the function
oracle and G is given by gtrans.

For a complete description and analysis of the algorithm, see [Wat] or [NC00].
The function main creates a zeroed qubit list for the function, applies the Hadamard trans-

form to all the elements of that list and then applies the G transformation 4 times as this
example is for a 4-bit function.

1 #Import in tL i s tConvers ion . qpl
2 #Import gtrans . qpl
3 main : : ( )=
4 { dataqbs = intToZeroQubitLis t (15 | ) ;
5 hadList dataqbs ;
6 doNGrovers ( 4 ) dataqbs ;
7 i = qub i tL i s tTo In t ( dataqbs ) ;
8 }

Figure 4.9: L-QPL code to call the grover search algorithm

The function intToZeroQubitList creates a list of zeroed qubits as long as the standard binary
representation of the input number. For example, if it were passed the value 3, it would return
a list of length 2. If it were passed the value 21 it would return a list of length 5.
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1 #Import Prelude . qpl
2 intToZeroQubitLis t : : ( n : Int | ; nq : L i s t (Qubit ) )=
3 { i f n == 0 => { nq = Nil }
4 else => { nq ’ = intToZeroQubitLis t ( n ≫ 1 | ) ;
5 nq = Cons (|0> , nq ’ ) }
6 }
7 qub i tL i s tTo In t : : ( nq : L i s t (Qubit ) ; n : Int )=
8 { case nq of
9 Nil => { n = 0 }
10 Cons (q , nq ’ ) =>

11 { n ’ = qub i tL i s tTo In t ( nq ’ ) ;
12 measure q of
13 |0> => { n1 = 0 }
14 |1> => { n1 = 1 } ;
15 use n1 , n ’ in { n = n1 + ( n ’ ≪ 1) } }
16 }

Figure 4.10: L-QPL code to convert integers from or to lists of qubits

The function qubitListToInt creates a probabilistic integer based on the values of the qubits
in the list. Note that the list is assumed to be least significant digit first.

The phase uses phase kickback to implement the U0 transformation. Note this is an excel-
lent example of the utility of both 0-based quantum control and quantum control by a data
structure.

1 #Import Prelude . qpl
2

3 phase : : ( inqs : L i s t (Qubit ) ; outqs : L i s t (Qubit ) )=
4 { a=|1> ; Had a ;
5 Not a ⇐ ~inqs ; //Not a when a l l e l t s of inqs are |0>
6 Had a ; Not a ; discard a ;
7 outqs=inqs
8 }

Figure 4.11: L-QPL code using phase kickback to transform the list

The function doNGrovers calls the function gtrans repeatedly, based on the input n.
The gtrans function implements theG transform above. Note that wemay ignore theminus

sign in G’s definition as we are using density matrices.
The oracle for the grover algorithm is normally assumed to be a given. We provide a

specific implementation where f(12) = 1.

4.2.2 Simon’s algorithm

Simon’s algorithm determines a global property of a given function, f, provided it is guaranteed
to follow some rules. The function f, from n bits to n bits, must either be one-to-one, or when
for any vectors of bits x,y with f(x1, . . . , xn) = f(y1, . . . ,yn) then (x1 ⊕ y1, . . . , xn ⊕ yn) =

(s1, . . . , sn) where ⊕ is exclusive-or and the vector s is the same for any choices of x or y.
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1 #Import o rac l e . qpl
2 #Import hadList . qpl
3 #Import phase . qpl
4

5 gtrans : : ( dataqbs : L i s t (Qubit ) ;
6 dataqbs : L i s t (Qubit ) )=
7 { hadList dataqbs ;
8 phase dataqbs ;
9 hadList dataqbs ;
10 orac l e dataqbs ;
11 }
12

13

14 doNGrovers : : ( n : Int | dataqbs : L i s t (Qubit ) ;
15 dataqbs : L i s t (Qubit ) )=
16 { i f ( n==0) => { } //Done
17 else =>

18 { gtrans dataqbs ;
19 doNGrovers (n−1) dataqbs }
20 }

Figure 4.12: L-QPL code to do the grover transformation

1 #Import Prelude . qpl
2

3 orac l e : : ( dataqbs : L i s t (Qubit ) ;
4 dataqbs : L i s t (Qubit ) )=
5 { a = |1> ; Had a ;
6 case dataqbs of
7 Nil =>

8 { dataqbs = Nil ;
9 Had a ; Not a ; discard a }
10 Cons (hd , t l ) =>

11 { case t l of
12 Nil =>

13 { dataqbs = Nil ;
14 Had a ; Not a ; discard a ; discard hd ; }
15 Cons (hd ’ , t l ’ ) =>

16 { Not a ⇐ ~hd , ~hd ’ , t l ’ ; // Search for 0 0 1 1 ( 1 2 )
17 dataqbs = Cons (hd , ( Cons (hd ’ , t l ’ ) ) ) ;
18 Had a ; Not a ; discard a }
19 }
20 }

Figure 4.13: L-QPL code using phase kickback when f(12) = 1
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The L-QPL program to implement Simon’s algorithm is in figure 4.14 with supporting
routines in figure 4.15. The hadList function is defined in figure 4.32 on page 67 and the oracle
and “blackboxes” for this implementation in figure 4.16 on the next page and figure 4.17.

For a specific function f : bitn → bitn, the quantum portion of the algorithm returns a
value r such that r · s = 0. The classical remainder of the algorithm usually runs the quantum
portion a number of times to obtain different values of r and then performs Guassian elim-
intion on the series of linear equations to determine s. We present only the quantum portion
in this example.

The quantumportion first creates a list of lengthn of qubits initialized to |0〉. TheHadamard
transform is applied to the list, followed by the oracle for f followed by another Hadamard.
The qubits are then measured and the result is r.

For a complete description and analysis of the algorithm, see [Wat] or [NC00].
In figure 4.14, the type ZorO represents bits. The function qubToBitList converts a list of

qubits to elements of type ZorO by repeated measures.

1 #Import o rac l e . qpl
2 #Import hadList . qpl
3

4 main : : ( )=
5 { dqs=Cons (|0> , Cons (|0> , Cons (|0> , Nil ) ) ) ;
6 hadList dqs ;
7 orac l e dqs ;
8 hadList dqs ;
9 qubToBitLis t ( dqs ; b i t s )
10 }
11

12 qdata ZorO = { Z | O }
13

14 qubToBitLis t : : ( inqub i t s : L i s t (Qubit ) ;
15 out : L i s t (ZorO ) )=
16 { case inqub i t s of
17 Nil => { out = Nil }
18 Cons (hd , t l ) =>

19 { ou t t l = qubToBitLis t ( t l ) ;
20 measure hd of
21 |0> => { out = Cons (Z , ou t t l ) }
22 |1> => { out = Cons (O, ou t t l ) } }
23 }

Figure 4.14: L-QPL code to do Simon’s algorithm

The function ndestLength is a non-destructive measure of the length of a list. The function
makeZeroQubitList creates a list of zeroed qubits when given a length.

The oracle for Simon’s algorithm is one of the more complex in the examples given in this
thesis. It makes use of the decomposition of f : bit3 → bit3 into three functions, fi : bit3 → bit

where fi gives the i-th component of f. These are represented by the functions bbox1, bbox2 and
bbox3.

The oracle function creates a list of ancilla qubits which are then used in each of the bboxn
functions, with the ancilla’s being exclusive-or’ed with the results of the functions.
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1 #Import Prelude . qpl
2

3 ndestLength : : ( inL i s : L i s t ( a ) ;
4 len : Int , outLis : L i s t ( a ) )=
5 { case i nL i s of
6 Nil => { len = 0 ; outLis = Nil }
7 Cons (hd , t l ) =>

8 { ndestLength ( t l ; t l en , t a i l ) ;
9 use t l en in { len = 1 + t l en } ;
10 outLis = Cons (hd , t a i l ) }
11 }
12

13 makeZeroQubitList : : ( len : Int | ; outLis : L i s t (Qubit ) )=
14 { i f ( len =< 0) => { outLis = Nil }
15 else => { ou tL i s t Ta i l = makeZeroQubitList ( len−1 | ) ;
16 outLis = Cons (|0> , ou tL i s t Ta i l ) }
17 }

Figure 4.15: L-QPL list functions

1 #Import blackboxes . qpl
2

3 orac l e : : ( dataqbs : L i s t (Qubit ) ;
4 dataqbs : L i s t (Qubit ) )=
5 { ndestLength ( dataqbs ; len , dataqbs ) ;
6 use len ;
7 makeZeroQubitList ( len | ; a n c i l l a s ) ;
8 bboxfRecurse ( 1 , len ) dataqbs a n c i l l a s ;
9 discard a n c i l l a s ;
10 }
11

12 bboxfRecurse : : ( s t a r t : Int , len : Int | dqs : L i s t (Qubit ) , anc : L i s t (Qubit ) ;
13 dqs : L i s t (Qubit ) , anc : L i s t (Qubit ) )=
14 { i f ( len < s t a r t ) => { }
15 else => { bbox ( s t a r t ) dqs anc ;
16 bboxfRecurse ( ( s t a r t +1 ) , len ) dqs anc }
17 }
18

19 //Assumption of three qubi t s − customize fo r each funct ion
20 bbox : : ( index : Int | dqs : L i s t (Qubit ) , anc : L i s t (Qubit ) ;
21 dqs : L i s t (Qubit ) , anc : L i s t (Qubit ) )=
22 { i f ( index == 1) => { bbox1 dqs anc }
23 ( index == 2) => { bbox2 dqs anc }
24 else => { bbox3 dqs anc }
25 }

Figure 4.16: L-QPL code implementing oracle for Simon’s algorithm
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The code for the black boxes simply applies various combinations of controlled Nots to
create the desired boolean functions. The code in figure 4.17 only shows the first component.
The code for the second and third components is similar.

1 #Import L i s tU t i l s . qpl
2 // bb1 r e su l t s in 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 when applied to combos of x , y , z
3 bbox1 : : ( dqs : L i s t (Qubit ) , anc : L i s t (Qubit ) ;
4 dqs : L i s t (Qubit ) , anc : L i s t (Qubit ) )=
5 { case anc of
6 Nil => { anc = Nil }
7 Cons (hAnc , a t a i l ) =>

8 { case dqs of
9 Nil => { anc = Cons (hAnc , a t a i l ) ;
10 dqs = Nil }
11 Cons ( x , t l 1 )=>

12 { case t l 1 of
13 Nil =>{ anc = Cons (hAnc , a t a i l ) ;
14 dqs = Cons ( x , Nil ) }
15 Cons ( y , t l 2 )=>

16 { case t l 2 of
17 Nil => { anc = Cons (hAnc , a t a i l ) ;
18 dqs = Cons ( x , ( Cons ( y , Nil ) ) ) }
19 Cons ( z , t l 3 )=>

20 { // Now have x , y and z to work with .
21 cq = |0> ; Not cq ⇐ y , z ;
22 Not cq ⇐ ~y ,~ z ;
23 Not cq ⇐ x ;
24 Not hAnc ⇐ cq ; discard cq ;
25 anc = Cons (hAnc , a t a i l ) ;
26 dqs = Cons ( x , Cons ( y , Cons ( z , t l 3 ) ) ) }
27 }
28 }
29 }
30 }

Figure 4.17: L-QPL code implementing first black box for Simon’s algorithm
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4.3 Quantum arithmetic

This section provides examples of functions that will do arithmetic on quantum values. The
primary source of these algorithms is [VBE95], although the algorithms and types used in
modular arithmetic are not ones I have encountered yet in the literature.

4.3.1 Quantum adder

This section provides subroutines that perform carry-save arithmetic on qubits. The carry and
sum routines in figure 4.18 function as gates on four qubits and three qubits respectively.

1 carry : : ( c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ;
2 c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ) =

3 { Not c1 ⇐ b , a ;
4 Not b ⇐ a ;
5 Not c1 ⇐ b , c0
6 }
7 sum : : ( c : Qubit , a : Qubit , b : Qubit ;
8 c : Qubit , a : Qubit , b : Qubit ) =

9 { Not b ⇐ a ;
10 Not b ⇐ c ;
11 }
12 carryRev : : ( c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ;
13 c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ) =

14 { Not c1 ⇐ b , c0 ;
15 Not b ⇐ a ;
16 Not c1 ⇐ b , a
17 }

Figure 4.18: L-QPL code to implement carry and sum gates

Additionally, the reverse of the carry is also defined in the same figure. In order to define
a subtraction, which can be defined as the reverse of the add function, we would also need to
define the reverse of the sum function.

The addition algorithm adds two lists of qubits and an input carried qubit. The first list
is unchanged by the algorithm and the second list is changed to hold the sum of the lists, as
shown in figure 4.19 on the next page.

The program proceeds down the lists A and B of input qubits, first applying the carry to the
input carried qubit, the heads of A and B and a new zeroed qubit, c1. When the ends of the
lists are reached, a controlled not and the sum are applied. The output A+B list is then started
with c1. Otherwise, the program recurses, calling itself with c1 and the tails of the input lists.
When that returns, carry and sum are applied, the results are “Consed” to the existing tails of
the lists, c1 is discarded and the program returns.

4.3.2 Modular arithmetic

Most treatments of quantum modular arithmetic assume the program / algorithm will work
with a quantum register with a sufficiently large number of qubits, as in [VBE95]. In L-QPL,
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1 #Import carrysave . qpl
2 adder : : ( c0 : Qubit , a s in : L i s t (Qubit ) , bs in : L i s t (Qubit ) ;
3 c0 : Qubit , asout : L i s t (Qubit ) , aplusbout : L i s t (Qubit ) ) =

4 { case as in of
5 Nil => { asout = Nil ; aplusbout = Nil }
6 Cons ( a , t a i l a ) =>

7 { case bsin of
8 Nil => { asout = Nil ; aplusbout = Nil ; }
9 Cons ( b , t a i l b ) =>

10 { c1 = |0> ;
11 carry c0 a b c1 ;
12 case t a i l b of
13 Nil => { Not b ⇐ a ;
14 sum c0 a b ;
15 t a i l b = Cons ( c1 , Nil ) }
16 Cons ( t , t lb ’ ) =>

17 { t a i l b = Cons ( t , t lb ’ ) ;
18 adder c1 t a i l a t a i l b ;
19 carryRev c0 a b c1 ;
20 sum c0 a b ;
21 discard c1 } ;
22 asout = Cons ( a , t a i l a ) ;
23 aplusbout = Cons ( b , t a i l b ) } }
24 }

Figure 4.19: L-QPL code to add two lists of qubits
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we define a new datatype for quantummodular integers, called QuintMod. A QuintMod consists
of a triple of two integers and a list of qubits. The first integer is the maximum size of the list
and the second integer is the modulus.

1 #Import ModFunctions . qpl
2 #Import L i s tFunc t ions . qpl
3 #Import quints . qpl
4 qdata QuintMod = {QuintMod ( Int , Int , L i s t (Qubit ) ) }
5

6 //Convert a p robaba l i s t i c i n t to a QuintMod
7 intToQuintMod : : ( radix : Int , n : Int ; nq :QuintMod )=
8 { use n , radix ;
9 determineIntS ize ( radix ; s i z e ) ;
10 cintToQuintMod (n , radix | s i z e ; nq )
11 }
12

13 //Convert a c l a s s i c a l i n t to a QuintMod
14 cintToQuintMod : : ( n : Int , radix : Int | s i z e : Int ; nq :QuintMod )=
15 { i f n == 0 => { nq = QuintMod ( s ize , radix , Nil ) }
16 else => { nmr := n mod radix ;
17 q l i s t = in tToQubi tL is t (nmr | ) ;
18 nq = QuintMod ( s ize , radix , q l i s t ) }
19 }
20

21 //Convert a QuintMod to a p robaba l i s t i c in t ege r
22 quintModToInt : : ( nq :QuintMod ; n : Int )=
23 { case nq of
24 QuintMod ( _ , radix , d i g i t s ) =>

25 { n ’ := qub i tL i s tTo In t ( d i g i t s ) ;
26 use radix in {n = n ’ mod radix } }
27 }

Figure 4.20: L-QPL definitions of QuintMod

The code for the type definition and conversion from and to integers is given in figure 4.20.
Given these definitions and code for adding and subtracting lists of qubits(as in sub-section 4.3.1),

it is now possible to define a smart constructor for a QuintMod.
A QuintMod triplet has only one invariant that must be maintained. That is the list of

qubits must have length less than or equal to the first number of the triplet. Note this implies
that the number represented by a qubit list may be outside the range of the modulus. For
example, assume a modulus of 5. This implies a length of 3 qubits. The (qu)bit sequences
of 101, 011, 111, representing 5, 6 and 7 are allowed. When converting back to a viewable
integer, these would be converted to 0, 1, 2 respectively.

The function makeQuint defined in figure 4.21 maintains the length invariant, assuming that
the length is no more than 1 greater than allowed. That is, if working with QuintMod numbers
of length n, the List (Qubit) argument has length at most n + 1.

This will imply the represented number passed in is at most 2n+1 − 1. As the modulus is
at least 2n−1, at most two subtractions of the modulus will ensure the passed in list represents
a number in the range 0 – 2n − 1. The subtractions are controlled by the n + 1st qubit in the
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1 #Import Prelude . qpl
2 #Import carrysave . qpl
3 #Import QuintMods . qpl
4

5 // Needs to sub t ra c t the modulus 0 ,1 or 2 times to
6 // get the co r r e c t range for the numbers .
7 makeQuint : : ( s i z e : Int , radix : Int , d i g i t s : L i s t (Qubit ) ;
8 res :QuintMod )=
9 { getLength ( d i g i t s ; d ig i t s , length ) ;
10 use s ize , length in
11 { i f length > s i z e =>

12 { // Two con t ro l l ed subs
13 use radix ;
14 csubModulus ( radix | d i g i t s ; d i g i t s ) ;
15 takeOnly ( s i z e+1 | d i g i t s ; d i g i t s ) ; //Last i s |0>
16 csubModulus ( radix | d i g i t s ; d i g i t s ) ;
17 takeOnly ( s i z e | d i g i t s ; d i g i t s ) ; //Last i s |0>
18 res = QuintMod ( s ize , radix , d i g i t s ) }
19 else =>

20 { res = QuintMod ( s ize , radix , d i g i t s ) }
21 }
22 }
23

24 csubModulus : : (modulus : Int | d i g i t s : L i s t (Qubit ) ;
25 digs : L i s t (Qubit ) )=
26 { s p l i t L a s t ( d ig i t s , |0> ; d ig i t s , l a s t ) ;
27 c t ld in tToQub i tL i s t (modulus | l a s t ; l a s t , subRad ) ;
28 digs = append ( d ig i t s , Cons ( l a s t , Nil ) ) ;
29 c0 = |0> ;
30 subLis t s c0 subRad digs ;
31 discard c0 , subRad ;
32 }

Figure 4.21: Semi-Smart constructor for QuintMod
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list.
The reason the numbers may take on the full range is due to the representation. For exam-

ple, if we are working in mod 4, which requires 3 qubits for representation we may attempt
to add 7 to itself. This will result in 14, requiring 4 qubits. The final qubit, recalling we store
numbers with least significant qubit first, will be |1〉. Subtracting 4 once leaves us with 10,
still requiring 4 qubits. Subtracting 4 once more gives us 6 which brings us back to the correct
range.

1 #Import smartConstructor . qpl
2

3 addM : : ( as in :QuintMod , bsin :QuintMod ;
4 asout :QuintMod , aplusbout :QuintMod ) =

5 { case as in of QuintMod ( sizeA ,mA, aDig i t s ) => {
6 case bsin of QuintMod ( sizeB ,mB, bDig i t s ) =>

7 { use s izeB ;
8 normalize ( s izeB| bDig i t s ; bDig i t s ) ;
9 c0 = |0> ;
10 addLists c0 aDig i t s bDig i t s ;
11 discard c0 ;
12 asout = QuintMod ( sizeA ,mA, aDig i t s ) ;
13 aplusbout = makeQuint ( sizeB ,mB, bDig i t s ) } }
14 }
15

16 addListToQuint : : ( inc : L i s t (Qubit ) , dest :QuintMod ;
17 dest :QuintMod )=
18 { case dest of QuintMod ( sizeD ,mdD, dDigi ts ) =>

19 { use sizeD ,mdD;
20 a = QuintMod ( sizeD ,mdD, inc ) ;
21 dest = QuintMod ( sizeD ,mdD, dDigi ts ) ;
22 addM a dest ;
23 discard a }
24 }

Figure 4.22: Quantum modular addition

figure 4.22 shows the L-QPL code for implementing modular addition. The function addM

takes in two QuintMod elements and adds the first to the second. Note the use of the smart
constructor makeQuint to produce the result.

At this stage modular multiplication is straightforward to write. First, the support func-
tions ctlCopy and ctlDouble are defined in figure 4.23. The ctlCopy function creates a “copy” of
a QuintMod. Note that the qubitsare all created by controlled-Nots of the original list, so the
“copy” is entangled with the original. If the control qubit is |0〉, the resulting QuintMod is zero.
The ctlDouble function uses the controlled copying and introduces a new |0〉 at the beginning
of the list of qubits in the QuintMod. This effectively doubles the number by shifting it one
position to the right. The resulting QuintMod is created using the smart constructor defined
previously.

The function multiplyM is then defined as a recursive function in figure 4.24. The algorithm
used is the standard grade school multiplication method.
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1 #Import bas i cAr i th . qpl
2

3 ctlCopy : : ( c t l : Qubit , s r c :QuintMod ;
4 c t l : Qubit , s r c :QuintMod , dest :QuintMod )=
5 { case s r c of QuintMod ( s ize , modulus , srcDig )=>

6 { use s ize , modulus ;
7 c t lCopyLis t ( c t l , srcDig ; c t l , srcDig , destDig ) ;
8 dest = QuintMod ( s ize , modulus , destDig ) ;
9 s r c = QuintMod ( s ize , modulus , srcDig ) }
10 }
11

12 ct lDouble : : ( c t l : Qubit , s r c :QuintMod ;
13 c t l : Qubit , s r c :QuintMod , dest :QuintMod )=
14 { case s r c of QuintMod ( s ize , modulus , srcDig )=>

15 { use s ize , modulus ;
16 c t lCopyLis t ( c t l , srcDig ; c t l , srcDig , destDig ’ ) ;
17 destDig = Cons (|0> , destDig ’ ) ;
18 dest = makeQuint ( s ize , modulus , destDig ) ;
19 s r c = QuintMod ( s ize , modulus , srcDig ) }
20 }
21

22 c t lCopyLis t : : ( c t l : Qubit , s r c L i s t : L i s t (Qubit ) ;
23 c t l : Qubit , s r c L i s t : L i s t (Qubit ) , d e s tL i s t : L i s t (Qubit ) )=
24 { case s r c L i s t of
25 Nil => { s r c L i s t = Nil ; d e s tL i s t = Nil }
26 Cons (hd , t l ) =>

27 { c t lCopyLis t ( c t l , t l ; c t l , t l , d e s t t l ) ;
28 desthd = |0> ;
29 Not desthd ⇐ c t l , hd ;
30 s r c L i s t = Cons (hd , t l ) ;
31 des tL i s t = Cons ( desthd , d e s t t l ) }
32 }

Figure 4.23: Support functions for Quantum modular multiplication
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1 #Import multSupport . qpl
2

3 multiplyM : : ( cor :QuintMod , cand :QuintMod ;
4 cor :QuintMod , res :QuintMod )=
5 { case cand of QuintMod ( sizeA ,modA, aDig ) =>

6 { use sizeA ,modA;
7 res = cintToQuintMod (0 ,modA | sizeA ) ;
8 case aDig of Nil => { }
9 Cons (hdA, tlA )=>

10 { ctlCopy (hdA, cor ; hdA, cor , corcopy ) ;
11 discard hdA;
12 addM corcopy res ;
13 discard corcopy ;
14 c t l = |1> ;
15 ct lDouble ( c t l , cor ; c t l , cor , cordouble ) ;
16 discard c t l ;
17 res1 = QuintMod ( sizeA , modA, tlA ) ;
18 multiplyM cordouble res1 ; discard cordouble ;
19 addM res1 res ; discard res1 }
20 }
21 }

Figure 4.24: Quantum modular multiplication

1 #Import mult iply . qpl
2

3 ctlCopyOne : : ( c t l : Qubit , s r c :QuintMod ;
4 c t l : Qubit , s r c :QuintMod , dest :QuintMod )=
5 { ctlCopy ( c t l , s r c ; c t l , src , dest ) ; //dest == 0 i f c t l == 0
6 c t l one = |0> ;
7 Not c t l one ⇐ ~ c t l ;
8 addListToQuint (Cons ( c t lone , Nil ) , dest ; dest ) ;
9 }
10

11 square : : ( s r c :QuintMod ; dest :QuintMod )=
12 { c t l = |1> ;
13 ctlCopy ( c t l , s r c ; c t l , dest , cpy ) ; discard c t l ;
14 multiplyM cpy dest ; discard cpy
15 }

Figure 4.25: Quantum modular exponentiation support
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Modular exponentiation is written in a similarmanner. First the support functions ctlCopyOne

and square are defined in figure 4.25. ctlCopyOne uses ctlCopy defined above to create a copy of
a QuintMod, but adds 1 to the resulting QuintMod when the control qubit is |0〉, resulting in
the identity for multiplication rather than the identity for addition. The function square corre-
sponds to ctlDouble in the multiplication case.

1 #Import powerSupport . qpl
2

3 powerM : : ( base :QuintMod , pow :QuintMod ;
4 res :QuintMod )=
5 { case pow of QuintMod ( sizeA ,modA, aDig ) =>

6 { use sizeA ,modA;
7 res = cintToQuintMod (1 ,modA|sizeA ) ;
8 case aDig of Nil => { discard base } // base^0 i s 1
9 Cons (hdA, tlA )=>

10 { ctlCopyOne (hdA, base ;hdA, base , basecopy ) ;
11 discard hdA;
12 multiplyM basecopy res ; discard basecopy ;
13 square ( base ; basesqd ) ;
14 pow’ = QuintMod ( sizeA , modA, tlA ) ;
15 powerM( basesqd ,pow ’ ; res1 ) ;
16 multiplyM res1 res ; discard res1 } }
17 }

Figure 4.26: Quantum modular exponentiation

The code for the actual powerM function is in figure 4.26.
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4.4 Order finding

Shor’s algorithm for factoring depends on the quantum algorithm for order finding. Shor’s
algorithm may be summarized by the following three steps:

• Setup;

• Call order finding (a quantum algorithm);

• Check to see if an answer has been found, repeat if not.

In this section, we concentrate on the quantum portion, order finding. Theoretical details
may be found in [NC00].

The code for the main order finding function, OrderFind is shown in figure 4.27

1 #Import powerFind . qpl
2 #Import inverseQf t . qpl
3

4 orderFind : : ( n : Int , x : Int | ; order : Int )=
5 {
6 s i z e := determineIntS ize (n ) ;
7 s izeT := 2 × s i z e + 1 + 2 ;
8 makeZeroQubitList ( s izeT | ; t L i s t ) ;
9 hadList t L i s t ;
10 xQm = intToQuintMod ( x ) ;
11 powList xQm tL i s t ;
12 discard xQm;
13 inverseQf t t L i s t ;
14 r e su l t = qub i tL i s tTo In t ( t L i s t ) ;
15 gcdrs := gcd ( r e su l t , ( 2 ≪ s izeT ) ) ;
16 order = s izeT mod gcdrs ;
17 }

Figure 4.27: L-QPL function for order finding.

Beginning at lines 1 and 2, the program imports files which provide various other func-
tions. At line 4, the function is declared to take two classical integers as input and return
one probabalistic integer. The first two lines of code, 6 and 7 compute the number of qubits
required for the algorithm to work with a maximum error of 1

4 . Increasing sizeT will reduce
the error.

Lines 8 through 10 complete the initial setup for the algorithm. These include: Creating
tList , a list of sizeT qubits initialized to zero; applying the Hadamard transform to each qubit;
creating xQm, a QuintMod with the value of the input parameter x. See sub-section 4.3.2 on
page 56 for the details of modular arithmetic.

Line 11 performs the modular exponentiation and is shown in figure 4.28. This is similar
to the exponentiation function in figure 4.26 on the previous page and has just been modified
to work with an exponent in list form and to retain the exponent.

On completion of the exponentiation, the actual result is discarded as it has no further
effect on the algorithm. Then, the inverse quantum Fourier transform (shown in figure 4.29
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1 #Import power . qpl
2

3 powList : : ( base :QuintMod , pow : L i s t (Qubit ) ;
4 res :QuintMod , pow : L i s t (Qubit ) )=
5 { case base of QuintMod ( sizeA ,modA, baseDig ) =>

6 { use sizeA ,modA;
7 res = cintToQuintMod (1 ,modA|sizeA ) ;
8 base = QuintMod ( sizeA ,modA, baseDig ) ;
9 case pow of
10 Nil => {pow=Nil ; discard base } // base^0 i s 1
11 Cons (hdA, tlA ) =>

12 { ctlCopyOne (hdA, base ;hdA, base , basecopy ) ;
13 multiplyM basecopy res ;
14 discard basecopy ;
15 square ( base ; basesqd ) ;
16 powList basesqd tlA ;
17 multiplyM basesqd res ; discard basesqd ;
18 pow = Cons (hdA, tlA ) } }
19 }

Figure 4.28: L-QPL code for modular power by a list

and figure 4.30) is applied to tList and it is measured to produce a probabalistic integer in line
14.

The final part of the algorithm is normally described as using a continued fraction al-
gorithm to compute the potential order. This is the same as dividing 2sizeT by the greatest
common division of itself and the result.

At this point, since this is a probabilistic algorithm, the calling function would need to
check whether the result is correct. If so, it may then be used in the completion of the factoring
algorithm.

Various other support functions for this algorithm are shown in figure 4.31 and figure 4.32.
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1 #Import inverseRota te . qpl
2 #Import U t i l s . qpl
3

4 inverseQf t : : ( inqs : L i s t (Qubit ) ; outqs : L i s t (Qubit ) ) =

5 { reverse inqs ;
6 inverseQft ’ inqs ;
7 outqs = reverse ( inqs ) ;
8 }
9

10 inverseQft ’ : : ( inqs : L i s t (Qubit ) ; outqs : L i s t (Qubit ) ) =

11 { case inqs of
12 Nil => { outqs = Nil }
13 Cons (h , inqs ’ ) =>

14 { inverseQft ’ inqs ’ ;
15 inverseRota te ( 2 ) h inqs ’ ;
16 Had h ;
17 outqs = Cons (h , inqs ’ ) }
18 }

Figure 4.29: Function to apply the inverse quantum Fourier transform

1 #Import Prelude . qpl
2

3 inverseRota te : : ( n : Int| h : Qubit , inqs : L i s t (Qubit ) ;
4 h : Qubit , outqs : L i s t (Qubit ) )=
5 { case inqs of
6 Nil => { outqs = Nil }
7 Cons ( q , inqs ’ ) =>

8 { use n ;
9 m := n+1 ;
10 inverseRota te (m) q inqs ’ ;
11 Inv−Rot ( n ) h ⇐ q ;
12 outqs = Cons ( q , inqs ’ ) }
13 }

Figure 4.30: Function to apply inverse rotations as part of the inverse QFT

1 #Import inverseQf t . qpl
2 #Import L i s tU t i l s . qpl
3

4 gcd : : ( a : Int , b : Int ; ans : Int ) =

5 { use a , b in {
6 i f b == 0 => { ans = a }
7 a == 0 => { ans = b }
8 a > b => { ans = gcd (b , a mod b ) }
9 else => { ans = gcd ( a , b mod a ) } }
10 }

Figure 4.31: GCD and import of other ulitlties
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1 #Import Prelude . qpl
2

3 ndestLength : : ( inL i s : L i s t ( a ) ;
4 len : Int , outLis : L i s t ( a ) )=
5 { case i nL i s of
6 Nil => { len = 0 ; outLis = Nil }
7 Cons (hd , t l ) =>

8 { ndestLength ( t l ; t l en , t a i l ) ;
9 use t l en in { len = 1 + t l en } ;
10 outLis = Cons (hd , t a i l ) }
11 }
12

13 makeZeroQubitList : : ( len : Int | ; outLis : L i s t (Qubit ) )=
14 { i f ( len =< 0) => { outLis = Nil }
15 else => { ou tL i s t Ta i l = makeZeroQubitList ( len−1 | ) ;
16 outLis = Cons (|0> , ou tL i s t Ta i l ) }
17 }
18

19

20 hadList : : ( inhqs : L i s t (Qubit ) ; outhqs : L i s t (Qubit ) )=
21 { case inhqs of
22 Nil => { outhqs = Nil }
23 Cons (q , had ta i l ) =>

24 { Had q ;
25 hadList had ta i l ;
26 outhqs = Cons (q , had ta i l ) }
27 }
28

29 append : : ( l i s t 1 : L i s t ( a ) , l i s t 2 : L i s t ( a ) ; app : L i s t ( a ) )=
30 { case l i s t 1 of
31 Nil => { app = l i s t 2 }
32 Cons ( a , subl1 ) =>

33 { app = Cons ( a , append ( subl1 , l i s t 2 ) ) }
34 }
35

36 reverse : : ( i n l i s : L i s t ( a ) ; r v l i s : L i s t ( a ) )=
37 { r v l i s = rev ’ ( i n l i s , Nil ) }
38

39 rev ’ : : ( i n l i s t : L i s t ( a ) , acc in : L i s t ( a ) ; r e v l i s t : L i s t ( a ) ) =

40 { case i n l i s t of
41 Nil => { r e v l i s t = acc in }
42 Cons ( a , s u b l i s t ) =>

43 { acc = Cons ( a , acc in ) ;
44 r e v l i s t = rev ’ ( sub l i s t , acc ) }
45 }

Figure 4.32: Various list ulitlties
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Chapter 5

Using the system

5.1 Running the L-QPL compiler

The compiler is run from the command line as:

lqpl <options> <infiles>

This will run the compiler on each of the input files infiles which are expected to have a
suffix ’.qpl’. The compiled files will be written with the suffix ’.qpo’.

The options allowed for the compiler are:

-e, --echo_code Echo the input files to stderr.

-s, --syntactic This option will cause the compiler to print a syntax parse tree on
stderr.

-r, --ir_print This compiler option will force the printing of the intermediate represen-
tation generated during the semantic analysis phase.

-h, --help This prints a help message describing these options on stderr.

-V, -?, --version This option prints the version information of the compiler on stderr.

-o[FILE], --output[=FILE] This will cause the compiler to write the compiled QSM
code to FILE.

-i[DIRLIST], --includes=DIRLIST For this option, DIRLIST is expected to be a list of
semi-colon separated directories. The compiler will use the directory list when search-
ing for any import files.

5.2 Running the QSM Emulator

Note: Figures in this section are from an earlier version of the emulator and will
be updated as some point in time. The general instructions on how to run the
emulator are still applicable.
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5.2.1 Window layout

When starting the simulator with the command emlqpl, The first thing seen is figure 5.1

Figure 5.1: The emulator window

The emulator window is composed of three main sections. On the left is the quantum
stack display area. On the right is a tabbed display of the emulator assembly/machine code.

The middle section is divided into four parts. At the top is an execution and display
control area followed by a view control area. Beneath these is the classical stack display area
with the dump display area at the bottom.

5.2.2 Loading a file

The first required step is to actually load a program into the emulator, using the File -->
Open dialog in figure 5.2.

Opening a QSM assembly file will check the compiler version used to create it and trans-
late it to machine code. If the compiler and emulator versions do not match, a warning dialog,
as in figure 5.3 will appear. It is suggested that one ensures the version of the compiler and
emulator are the same.

After a successful assemble, the assembled code will appear in the right hand side. In a
program, each function will appear as a separate tab in the tabbed code window. The cur-
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Figure 5.2: Emulator file open dialog

Figure 5.3: Version mis-match warning
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rently executing code will be in the top tab, which is labelled with a “(C)” and the name of the
currently executing function. Clicking on a tab will show the code associated with that tab.

5.2.3 Setting preferences

Figure 5.4: Preferences dialog

Prior to executing the program, various display and execution options may be set by using
the Edit --> Preferences dialog, shown in figure 5.4. The top third of the dialog con-
trols the spacing and size of nodes and their labels. The middle controls the font used and the
font size choices for various labels. Typically, the defaults for these are sufficient for general
execution.

The final section, with the single item Call Depth is used to control the actual depth of
recursion multiplied by the depth in the stream. In figure 5.4 the call depth is 1000, meaning that
at stream depth 0, we will perform 1000 calls before signalling non-termination, at stream
depth 5, 6000 calls and so on.

5.2.4 Running the program

The program execution is controlled by the elements of the Execution/Display section of
the main window. As shown in figure 5.5, there are two buttons (Step and Execute), a spin
control (Step Count) and a checkbox (Show Trace).

For each click of the Step button, the emulator will execute Step Count instructions and
then redisplay the components of the quantum stack machine. The spin control may be set to
any positive number.

The Execute button will run the program until it completes. Completion may either be
due to non-termination (e.g., exceeding the call depth number of calls at the current stream
depth), or actual completion. See the description of Stream Depth below. As well, while
executing, the program will display a progress bar below the Show Trace area. After com-
pletion, the machine components will be re-displayed.
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Figure 5.5: Execution control section of the main window

Figure 5.6: View controls section of the main window

The other component that affects execution in both step mode and execute mode is the
Stream Depth, shown in figure 5.6. Essentially, if one encounters a non-termination (a zero
quantum stack) after executing, just increase the Stream Depth and continue.

5.2.5 Result interpretation

Obviously, the first step is to visually examine the quantum stack. In case where a simple final
result is produced, this is often enough.

However, in cases where there are a significant number of nodes with multiple branches,
it can be difficult to determine what the results actually are.

For example, consider the end result of running Simon’s algorithm, as shown in figure 5.7.
The important result is “What are the resulting bit-strings?”1. Using the menu item File
--> Simulate, we bring up a simulation dialog, which does the “roll the dice” and shows
us what our end result would be when transferred to a classical computer. For example, for
three invocation of simulation, we get sub-figures (a), (b), and (c) as shown in figure 5.8.

Note that the bit string can simply be read from the top three entries in the simulation
results. It should also be noted that the additional simulations do not require re-execution by
the emulator. Instead, a new random value is generated and used to determine a single path
down the quantum stack for the values.

1Obviously, it is possible to determine the results solely by examination of the quantum stack as displayed.
The method shown here becomes more relevant the more complicated the result stack.
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Figure 5.7: Quantum stack at end of Simon’s algorithm

(a) First simulation (b) Second simulation (c) Third simulation

Figure 5.8: Simulation of Simon’s algorithm
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Appendix A

The quantum stack machine

A.1 Introduction to the quantum stack machine

The quantum stackmachine provides an execution environment where quantum and classical
datamay bemanipulated. The primary component of thismachine is the quantum stack, which
stores both quantum and probabilistic data.

The quantum stack has the same function as a classical stack in that it provides the basic
operations and data structures required for quantum computation.

For the semantics of this, please refer to [Gil07].

This chapter describes a machine using this full quantum stack and other data structures
to provide an execution environment for L-QPL programs.

A.2 Quantum stack machine in stages

The quantum stack machine is described in terms of four progressively more elaborate stages.
The first stage is the basic QS-machine, labelled BQSM. This stage provides facilities for the ma-
jority of operations of our machine, including classical operations, adding and discarding
data and classical control. The second stage, the labelled QS-machine, called LBQSM adds the
capability of applying unitary transforms with the modifiers Left, Right and IdOnly as
introduced in [Gil07]. The third stage, the controlled QS-machine, is labelled CQSM and pro-
vides the ability to do quantum control. The final stage, the QS-machine, is labelled QSM and
adds the ability to call subroutines and do recursion.

These stages are ordered in terms of complexity and the operations definable on them.
The ordering is:

BQSM < LBQSM < CQSM < QSM

When a function is defined on one of the lower stages, it is possible to lift it to a function on
any of the higher stages.
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A.2.1 Basic quantum stack machine

The quantum stack machine transitions for the quantum instructions are defined at this stage.
The state of the basic quantum stack machine has a code stream, C, a classical stack, S, a
quantum stack, Q, a dump, D and a name supply, N.

(C,S,Q,D,N) (A.1)

The code, C, is a list of machine instructions. Transitions effected by these instructions are
detailed in appendix A.4.1 on page 82. English descriptions of the instructions and what they
do are given in section 3.1 on page 31.

The classical stack, S, is a standard stackwhose itemsmay be pushed or pulled onto the top
of the stack and specific locations may be accessed for both reading and updating. Classical
arithmetic and Boolean operations are done with the top elements of the classical stack. Thus,
an add will pop the top two elements of the classical stack and then push the result on to the
top of the stack.

The dump, D, is a holding area for intermediate results and returns. This is used when
measuring quantum bits, using probabilistic data, splitting constructed data types and for
calling subroutines. Further details are given in appendix A.2.6 on the facing page.

The name supply, N, is an integer that is incremented each time it is used. The name
supply is used when binding nodes to constructed data nodes. As they are bound, they are
renamed to a unique name generated from the name supply. For further details on this, see
the transitions for QBind at appendix A.4.2 on page 82.

A.2.2 Labelled quantum stack machine

The labelled QS-machine, designated as LBQSM, extends BQSM by labelling the quantum
stack, L(Q). The quantum stack is labelled to control the application of unitary transforma-
tions, which allows quantum control to be implemented.

The labelled QS-machines state is a tuple of five elements:

(C,S,L(Q),D,N) (A.2)

The quantum stack is labelled by one of four labels: Full, Right, Left or IdOnly.
These labels describe how unitary transformations will be applied to the quantum stack.

When this labelling was introduced in [Gil07], it was used as an instruction modifier
rather than a labelling of the quantum stack. While the implementation of these modifiers
is changed, the effect on the quantum stack is the same. The quantum stack machine transi-
tions for unitary transformations are detailed in appendix A.4.8 on page 89.

A.2.3 Controlled quantum stack machine

The controlled quantum stackmachine, CQSM, adds the capability to add or remove quantum
control. This stage adds a control stack, C, and changes the tuple of classical stack, labelled
quantum stack, dump and name supply into a list of tuples of these elements. In the machine
states, a list will be denoted by enclosing the list items or types in square brackets.
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The CQSM state is a tuple of three elements, where the third element is a list of four-tuples:

(C,C, [(S,L(Q),D,N)]) (A.3)

The control stack is implemented using a list of functions, each of which is defined on
the third element of CQSM. The functions in the control stack transform the list of tuples
(S,L(Q),D,N). Control points are added to the control stack by placing an identity function
at the top of the stack. Control points are removed by taking the top of the control stack and
applying it to the current third element of CQSM, resulting in a new list of tuples. Adding
a qubit to control will modify the function on top of the control stack and change the list of
tuples of (S,L(Q),D,N).

A.2.4 The complete quantum stack machine

The complete machine, QSM, allows the implementation of subroutine calling. Its state con-
sists of an infinite list of CQSM elements.

Inflist(C,C, [(S,L(Q),D,N)]) (A.4)

Subroutine calling is done in an iterative manner. At the head of the infinite list, no sub-
routines are called, but result in divergence. Divergence is represented in the quantum stack
machine by a quantum stack with a trace of 0.

In the next position of the infinite list, a subroutine will be entered once. If the subroutine
is recursive or calls other subroutines, those calls will diverge. The next position of the infinite
list will call one more level. At the nth position of the infinite list subroutines are executed to
a call depth of n.

A.2.5 The classical stack

The machine uses and creates values on the classical stack when performing arithmetic oper-
ations. This object is a standard push-down stack with random access. Currently it accom-
modates both integer and Boolean values.

A.2.6 Representation of the dump

When processing various operations in the machine, such as those labelled as quantum con-
trol (measure et. al.), the machine will need to save intermediate stack states and results. To
illustrate, when processing a case deconstruction of a datatype, the machine saves all partial
trees of the node on the dump together with an empty stack to accumulate the results of pro-
cessing these partial trees. After processing each case the current quantum stack is merged
with the result stack and the next partial stack is processed. The classical stack is also saved
in the dump element at the beginning of the process and reset to this saved value when each
case is evaluated.

The dump is a list of dump elements. There are two distinct types of dump elements, one
for quantum control instructions and one used for call statements. The details of these ele-
ments may be found in the description of the quantum control transitions in appendix A.4.5
on page 85 and function calling in appendix A.4.9 on page 90.
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A.2.7 Name supply

The name supply is a read-only register of the machine. It provides a unique name when
binding nodes to a data node. The implementation uses an integer valuewhich is incremented
for each of the variables in a selection pattern in a case statement. It is reset to zero at the start
of each program.

A.3 Representation of data in the quantum stack

The quantum stack was introduced and described in [Gil07] in the chapeter on semantics.
This section will give further details of the implementation of the quantum stacks and show
example nodes.

A.3.1 Representation of qubits.

A single qubit is represented on the quantum stack as a node with four possible branches.
This assumes a basis for quantum computation of two elements, which is identified with
(0, 1) and (1, 0) in C

2. The four possible values of the branches represent the elements of the
qubit’s density matrix. This is illustrated in figure A.1. From left to right, the branches are
labelled with 00, 01, 10 and 11. The value at each branch is .5. This corresponds to the density

matrix
[

.5 .5

.5 .5

]

Figure A.1: A qubit after a Hadamard transform

With multiple qubits, the representation becomes hierarchical. For example, two qubits
will be represented by a tree with one of the qubits at the top and each of its sub-branches
having the second qubit below it. Consider applying a Hadamard transform to one qubit,
followed by a controlled-Not with that qubit as the control. This is a standard way to entangle
two qubits. As illustrated in figure A.2 on the facing page, this creates a tree in the quantum
stack with a total of four non-zero leaves. The quantum stack in the figure corresponds to a
sparse representation of the density matrix:









.5 0
0 0

0 .5
0 0

0 0
.5 0

0 0
0 .5
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Figure A.2: Two entangled qubits

A.3.2 Representation of integers and Boolean values

Numeric and Boolean data in the quantum stack machine is represented by a node with a
sub-branch for each value that occurs with a non-zero probability. These values may be of
either integer or Boolean type.

Figure A.3: An integer with three distinct values

figure A.3 depicts an integer i1 which has a 50% probability of being 5, and 25% each of
being 12 or 17.

A.3.3 Representation of general data types

The general datatype is represented as a node with one branch for each of the constructors
that occurs with a non-zero probability. Each branch is labelled by the constructor and the
names of any nodes that are bound to it1. These nodes will be referred to as bound nodes.

For example, in the List that appears in figure A.4 on the following page, the top node is
a mix of values. The node d1 has a 25% chance of being Nil and 75% of being a Cons of
two bound nodes. The first bound node is an element of the base type, integer. It is labelled
Cons_1_a which is an integer node having the single value 1. The second bound element is
Cons_0_nil1, which is another list having the single value of Nil.

1For example, in Lists of integers, the Cons constructor requires a base integer and another List.
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Figure A.4: A list which is a mix of [ ] and [1].

A.4 Quantum stack machine operation

This section describes the actual transitions of the stack machine for each of the instructions
in the machine.

A.4.1 Machine transitions

The majority of the transitions presented in this section are defined on a machine of type
BQSM = (C,S,Q,D,N) as was introduced in appendix A.2.1 on page 78. As discussed in
that section, labelling only affects the transition of unitary transforms. All other instruction
transitions ignore it, giving us:

Ins(L(Q)) = L(Ins(Q))

where Ins is the transition of some other instruction.
The transition for the application of transformations will use LBQSM, while the transition

for the add/remove control instructions uses the machine state of CQSM. The call instruction
uses the state of the complete machine, QSM, which allows recursion. All of these stages and
their associated states were defined and discussed in appendix A.2 on page 77.

A.4.2 Node creation

There are three instructions which allow us to create data on the stack and one which binds
sub-nodes into a data type. These are QLoad, QCons, QMove and QBind. The transitions
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are shown in figure A.5.
The instructions do the following tasks:

QLoad nm |i〉— Load a new qubit named nm on top of the quantum stack with the value
|i〉;

QCons nm Cns – Load a new datatype node on top of the quantum stack with name nm

and value Cns. Sub-nodes are not bound by this instruction.

QMove nm — Load a new classical node on top of the quantum stack with name nm and
value taken from the top of the classical stack. If the classical stack is empty, the value is
defaulted to 0.

QBind nm — Binds a sub-node down the branch of the node to the datatype constructor on
top of the quantum stack. Furthermore, the act of binding will cause the newly bound
sub-node to be renamed so that it is hidden until an unbind is performed. QBind uses
the name supply, N, to create the new name for the sub-node. Themachine will generate
an exception if the top of the quantum stack is not a single branched datatype or if a node
named nm is not found.

(QLoad x |k〉 :C,S,Q,D,N)

=⇒ (C,S, x:[|k〉 → Q],D,N)

(QCons x c:C,S,Q,D,N)

=⇒ (C,S, x:[c{}→ Q],D,N)

(QMove x:C, v:S,Q,D,N)

=⇒ (C,S, x:[v̄→ Q],D,N)

(QBind z0:C,S, x:[c{z ′
1, . . . , z

′
n}→ Q],D,N)

=⇒ (C,S, x:[c{z(N), z ′
1, . . . , z

′
n}→ Q[z(N)/z0]],D,N ′)

Figure A.5: Transitions for node construction

A.4.3 Node deletion

Three different instructions, QDelete, QUnbind and QDiscard remove data from the quan-
tum stack. These instructions are the converses of QBind, QLoad and QMove. Their transi-
tions are shown in figure A.6 and figure A.7. The instructions do the following tasks:

QDelete— removes the top node of the stack and any bound sub-nodes. This instruction has
no restrictions on the number of sub-stacks or bindings in a data node;

QDiscard — removes the top node of the stack. In all cases, the top node can only be
removed when it has a single sub-stack. For datatype nodes, QDiscard also requires
there are no bound sub-nodes.

QUnbind nm — removes the first bound element from a data type provided it has a single sub
branch. The datatype node must be on top of the quantum stack. The newly unbound
sub-node is renamed to nm.
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(QDelete:C,S,Q:[|kij〉 → Qij],D,N) =⇒ (C,S, (Q00 + Q11),D,N)

(QDelete:C,S,DT :[ci{bij}→ Qi],D,N) =⇒ (C,S,
∑

i(del({bij},Qi)),D,N)

(QDelete:C,S, I:[vi → Qi],D,N) =⇒ (C,S,
∑

i Qi,D,N)

Figure A.6: Transitions for destruction

For the QDelete instruction, the type of node is irrelevant. It will delete the node and, in
the case of datatype nodes, any bound nodes. This instruction is required to implement sub-
routines that have parametrized datatypes as input arguments. For example, the algorithm
for determining the length of a list is to return 0 for the “Nil” constructor and add 1 to the
length of the tail list in the “Cons” constructor. When doing this, the elements of the list are
deleted due to the linearity of L-QPL. The compiler will have no way of determining the type
of the elements in the list and therefore could not generate the appropriate quantum split and
discards. The solution is to use a QDelete instead.

The subroutine del used in the transitions in figure A.6 will recursively rotate up and then
delete the bound nodes of a datatype node.

(QDiscard:C,S, x:[|k〉 → Q],D,N) =⇒ (C,S,Q,D,N)

(QDiscard:C,S, x:[c{}→ Q],D,N) =⇒ (C,S,Q,D,N)

(QDiscard:C,S, x:[v→ Q],D,N) =⇒ (C, v:S,Q,D,N)

(QUnbind y:C,S, x:[c{z ′
1, . . . , z

′
n}→ Q],D,N)

=⇒ (C,S, x:[c{z ′
2, . . . , z

′
n}→ Q[y/z ′

1]],D,N)

Figure A.7: Transitions for removal and unbinding

The renaming is an integral part of the QUnbind instruction, as a compiler will not be able
to know the bound names of a particular data type node. The instruction does not delete the
data type at the top of the stack or the unbound node. If the top node is not a data type or has
more than a single branch or does not have any bound nodes, the machine will generate an
exception.

The machine ensures that it does not create name capture issues by rotating the bound
node to the top of the sub-stack before it does the rename. That is, given the situation as
depicted in the transitions, the quantum stack machine performs the following operations:

1. Q ′ ← pull(z ′
1,Q);

2. Q ′′ ← Q ′[y/z ′
1];

3. z ′
1 is removed from the list of constructors;

4. The new quantum stack is now set to x:[c{z ′
2, . . . , z

′
n}→ Q ′′].
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A.4.4 Stack manipulation

Most operations on a quantum stack affect only the top of the stack. Therefore, the machine
must have ways to move items up the stack. This requirement is met by the instructions
QPullup and QName. The transitions are shown in figure A.8.

The instructions do the following tasks:

QPullup nm — brings the first node named nm to the top of the quantum stack. It is not an
error to try pulling up a non-existent address. The original stack will not be changed in
that case.

QName nm1 nm2 — renames the first node in the stack having nm1 to nm2.

(QPullup x:C,S,Q,D,N) =⇒ (C,S,pull(x,Q),D,N)

(QName x y:C,S,Q,D,N) =⇒ (C,S,Q[y/x],D,N)

Figure A.8: Transitions for quantum stack manipulation

A QPullup nm has the potential to be an expensive operation as the node nm may be
deep in the quantum stack . In practice, many pullups interact with only the top two or three
elements of the quantum stack.

The algorithm for pullup is based on preserving the bag of path signatures. A path signature
for a node consists of a bag of ordered pairs (consisting of the node name and the branch
constructor) where every node from the top to the leaf is represented. Pulling up a node will
reorder the sub-branches below nodes to keep this invariant.

Due to the way arguments of recursive subroutines are handled in L-QPL, it is actually
possible to get multiple nodes with the same name, however, this does not cause a referencing
problem as only the highest such node is actually available in the L-QPL program.

A.4.5 Measurement and choice

The instructions Split, Measure and Use start the task of operating on a node’s partial
stacks, while the fourth, EndQC is used to iterate through the partial stacks. The transitions
are shown in figure A.9 on the next page.

The instructions do the following tasks:

Use Lbl — uses the classical node at the top of the quantum stack and executes the code at
Lbl for each of its values.

Split (c1, lbl1), . . . , (cn, lbln) —uses the datatype node at the top of the stack and execute a
jump to the code at lbli when there is a branch having constructor ci. Any constructors
not mentioned in the instruction are removed from the node first. There is no ordering
requirement on the pairs of constructors and labels in Split.

Measure Lbl00 Lbl11 —using the qubit node on top of the quantum stack, executes the code
at its two labels for the 00 and 11 branches. The off-diagonal elements of the qubit will
be discarded. This implements a non-destructive measure of the qubit.
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EndQC— signals the end of processing of dependent instructions and begins processing the
next partial stack. When all values are processed, merges the results and returns to the
instruction after the corresponding Measure, Use or Split instruction.

(Use ⊲CU:C,S, x:[v̄i → Qi],D,N)

=⇒ (EndQC,S, 0,Qc(S, [(xi:vi → Qi, ⊲CU)], ⊲C, 0):D,N)

(EndQC,S ′,Q,Qc(S, [(xi:vi → Qi, ⊲CU)]i=j,...,m, ⊲C,Q ′):D,N)

=⇒ (CU,S, xj,Qc(S, [(xi:vi → Qi, ⊲CU)]i=j+1,...,m, ⊲C,Q + Q ′):D,N)

(EndQC,S ′,Q,Qc(S, [], ⊲C,Q ′):D,N)

=⇒ (C,S,Q + Q ′,D,N)

(Split [(ci, ⊲Ci)]:C,S, x:[ci{Vi}→ Qi],D,N)

=⇒ (EndQC,S, 0,Qc(S, [(xi:ci{Vi}→ Qi, ⊲Ci)], ⊲C, 0):D,N)

(EndQC,S ′,Q,Qc(S, [(xi:ci{Vi}→ Qi, ⊲Ci)]i=j,...,m, ⊲C,Q ′):D,N)

=⇒ (Cj,S, xj,Qc(S, [(xi:ci{Vi}→ Qi, ⊲Ci)]i=j+1,...,m, ⊲C,Q + Q ′):D,N)

(EndQC,S ′,Q,Qc(S, [], ⊲C,Q ′):D,N)

=⇒ (C,S,Q + Q ′,D,N)

(Meas ⊲C0 ⊲C1:C,S, x:[|0〉 → Q0, |1〉 → Q1, . . .],D,N)

=⇒ (EndQC,S, 0,Qc(S, [(xk: |k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C, 0):D,N)

(EndQC,S ′,Q,Qc(S, [(xk: |k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C,Q ′):D,N)

=⇒ (C0,S, x0,Qc(S, [(x1: |1〉 → Q1, ⊲C1)], ⊲C,Q + Q ′):D,N)

(EndQC,S ′,Q,Qc(S, [(x1: |1〉 → Q1, ⊲C1)], ⊲C,Q ′):D,N)

=⇒ (C1,S, x1,Qc(S, [], ⊲C,Q + Q ′):D,N)

(EndQC,S ′,Q,Qc(S, [], ⊲C,Q ′):D,N)

=⇒ (C,S,Q + Q ′,D,N)

Figure A.9: Transitions for quantum node choices

Each of the code fragments pointed to by the instruction labels must end with the instruc-
tion EndQC. The EndQC instruction will trigger execution of the code associated with the next
partial stack.

The QUnbind is meant to be used at the start of the dependent code of a Split instruction.
The sequencing to process a datatype node is to do a Split, then in each of the dependent
blocks, execute QUnbind instructions, possibly interspersedwith QDelete instructions when
the bound node is not further used in the code. This is always concluded with a QDiscard
that discards the data node which was the target of the Split.
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In the following discussion there are no significant differences between the Split and
Measure. The action of Split is described in detail.

The Split, Measure and Use instructions make use of the dump. The dump element
used by these instructions consists of four parts:

• The return label. This is used when the control group is complete.

• The remaining partial stacks. A list consisting of pairs of quantum stacks and their corre-
sponding label. These partial stacks are the ones waiting to be processed by the control
group.

• The result quantum stack. This quantum stack accumulates the merge result of processing
each of the control groups partial stacks. This is initialized to an empty stack with a zero
trace.

• The saved classical stack. The classical stack is reset to this value at the start of processing
a partial stack and at the end. This occurs each time an EndQC instruction is executed.

The instruction Split [(c1, l1), (c2, l2)] begins with the creation of a dump entry holding
[(c1 → Q1, l1), (c2 → Q2, l2)] as the list of partial stacks and label pairs. The dump entry
will hold 0 quantum stack as the result stack, the current state of the classical stack and the
address of the instruction following the Split. The final processing of the Split instruction
sets the current quantum stack to zero and sets the next code to be executed to be EndQC.

The EndQC will change the top dump element by removing the first pair (c1 → Q1, l1)
from the execution list. It will set the current quantum stack to the first element of this pair
and the code pointer to the second element. Execution then proceeds with the first instruction
at l1.

When the next EndQC instruction is executed, the dump will again be changed. First the
current quantum stack will be merged with the result stack on the dump. Then the next pair
of partial quantum stack Pq (= c2 → Q2) and code pointer l2 is removed from the execution
list. The current quantum stack is set to Pq and the code pointer is set to l2. Finally, the
classical stack is reset to the one saved in the dump element.

When the partial stack list on the dump element is empty, the EndQC instructionwill merge
the current quantum stack with the result stack and then set the current quantum stack to
that result. The classical stack is reset to the one saved on the dump, the code pointer is set to
the return location saved in the dump element and the dump element is removed. Program
execution then continues from the saved return point.

Normally, the first few instructions pointed to by the Label in the pairs of constructor and
code labels will unbind any bound nodes and delete the node at the top of the stack. QSM
does not require this, hence, it is possible to implement both destructive and non-destructive
measurements and data type deconstruction.

Using classical values. The Use instruction introduced above differs from the instructions
Split and Measure in that it works on a node that may an unbounded number of sub-nodes.
The Use lbl instruction moves all the partial stacks to the quantum stack, one at a time, and
then executes the code at lbl for the resulting machine states. Normally, this code will start
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with a QDiscard, which will put the node value for that partial stack onto the classical stack,
and finish with an EndQC to trigger the processing of the next partial stack.

The dump and EndQC processing for a Use lbl is the same as for a Split or Measure.
The execution list pairs will all have the same label, the lbl on the instruction.

A.4.6 Classical control

The machine provides the three instructions Jump, CondJump and NoOp for branch con-
trol. Jumps are allowed only in a forward direction. The transitions for these are shown
in figure A.10. The instructions do the following tasks:

Jump lbl — causes execution to continue with the code at lbl.

CondJump lbl — examines the top of the classical stack. When it is False, execution will
continue with the code at lbl. If it is any other value, execution continues with the
instruction following the CondJump.

NoOp — does nothing in the machine. Execution continues with the instruction following
the NoOp.

(Jump ⊲CJ:C,S,Q,D,N) =⇒ (CJ,S,Q,D,N)

(CondJump ⊲CJ:C,False:S,Q,D,N) =⇒ (CJ,S,Q,D,N)

(CondJump ⊲CJ:C,True:S,Q,D,N) =⇒ (C,S,Q,D,N)

(NoOp:C,S,Q,D,N) =⇒ (C,S,Q,D,N)

Figure A.10: Transitions for classical control.

No changes are made to the classical stack, the quantum stack or the dump by these in-
structions. While NoOp does nothing, it is allowed as the target of a jump. This is used by the
L-QPL compiler in the code generation as the instruction following a Call.

A.4.7 Operations on the classical stack

The machine has five instructions that affect the classical stack directly. They are CGet,
CPut, CPop, CApply and CLoad, with transitions shown in figure A.11. The instructions
perform the following tasks:

CPop— destructively removes the top element of the classical stack.

CGet n — copies the nth element of the classical stack to the top of the classical stack.

CApply op — applies the operation op to the top elements of the classical stack, replacing
them with the result of the operation. Typically, the op is a binary operation such as add.

CLoad v — places the constant v on top of the classical stack.
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(CPop:C, v:S,Q,D,N) =⇒ (C,S,Q,D,N)

(CGet n:C, v1: · · · :vn:S,Q,D,N) =⇒ (c, vn:v1: · · · :vn:S,Q,D,N)

(CPut n:C, v1: · · · :vn:S,Q,D,N) =⇒ (c, v1: · · · :v1:S,Q,D,N)

(CApply opn:C, v1: · · · :vn:S,Q,D,N) =⇒ (C,opn(v1, . . . , vn):S,Q,D,N)

(CLoad n :C,S,Q,D,N) =⇒ (C,n:S,Q,D,N)

Figure A.11: Transitions for classical stack operations.

A.4.8 Unitary transformations and quantum control

The QS-Machine has three instructions which add or remove qubits (and other nodes) from
quantum control. The instruction transitions in this group are defined directly on CQSM or
LBQSM, as they will either affect the control stack (AddCtrl, QCtrl, UnCtrl) or need to
take into account the labelling of the quantum stacks (QApply).

The first three instructions do not affect the actual state of the quantum stack, classical
stack or dump. The QApply does affect the state of the quantum stack. The transitions are
shown in figure A.12.

The instructions perform the following tasks:

AddCtrl— starts a new control point on the control stack.

QCtrl— adds the node at the top of the quantum stack, together with any dependent sub-
nodes to the control stack.

UnCtrl— removes all the nodes in the top control point of the control stack.

QApply n T — parametrized the transform T with the top n elements of the classical stack
and then applies the parametrized transform to quantum stack. Control is respected
because of the labelling of the quantum stack.

(AddCtrl:C,C, [(Si,L(Qi),Di,Ni)]i=1,···n)])

=⇒ (C, id:C, [(Si,L(Qi),Di,Ni)]i=1,···n)])

(QCtrl:C, f:C, [(Si,L(Qi),Di,Ni)]i=1,···n)])

=⇒ (C, (g ◦ f):C, [(S
′

j,L(Qj)
′
,D

′

j)]j=1,···m)])

(UnCtrl:C, f:C, [(Si,L(Qi),Di,Ni)]i=1,···n)])

=⇒ (C,C, [(S
′′

j ,L(Qj)
′′
,D

′′

j )]j=1,···p)])

(QApply m t:C, (v1: · · · :vm:S),L(Q),D,N)

=⇒ (C,S, cTrans([v1, . . . , vm], t,L(Q)),D,N)

Figure A.12: Transitions for unitary transforms
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The function cTrans in the transition for QApplymust first create the transform. In most
cases, this is a fixed transform (e.g., Not, Hadamard), but both rotate and the UM transforms
are parametrized. The transform rotate is used in the quantum Fourier transform and UM is
the ax mod N transform used in order finding.

When the top node is a qubit, the function expects its required number of qubits to be the
top nodes. For example, a Hadamard expects only 1, a swap expects 2 and an UM will expect
as many qubits as N requires bits.

When a transform is applied to a datatype node the machine will attempt to rotate up the
required number of qubits to the top, perform the operation and then re-rotate the datatype
node back to the top.

The first step is to rotate the bound nodes of the datatype node starting at the left and
proceeding to the right. Left to right is determined by the ordering in the original constructor
expression used to create the datatype node. The machine will throw an exception if there
are insufficient bound nodes (e.g., Nil for a list) or if the rotation would be indeterminate.
The machine considers a rotation for a transform to be indeterminate whenever the subject
datatype node has more than one sub-stack. For example, this means a transform can not be
applied to an Either that is a mix of Left(|0>) and Right(|1>).

When the rotation of the qubits succeeds the function will transform the top parts of the
stack into a matrix Q of appropriate size (2× 2 for a 1−qubit transform, 16× 16 for a 4−qubit
and so forth) with entries in the matrix being the sub-stacks of the qubits used in the trans-
form.

At this point, the control labelling of the quantum stack is considered and one of the fol-
lowing four transforms will happen. If the actual transform is named T , the result will be:

cTrans T L(Q) =



















L(Q) L = IdOnly

L(TQ) L = Left

L(QT∗) L = Right

L(TQT∗) L = Full

Following this the quantum stack is reformed from the resulting matrix.

A.4.9 Function calling and returning

The Call and Return instructions are used for function calling. The Call instruction is the
only instruction that needs to directly work on QSM, the infinite list of CQSM items. The
transition for this is defined in terms of a subordinate function enterF which is defined on
BQSM. Its transition is also described below.

Recall the QS-machine stages have the states:

BQSM = (C,S,Q,D,N)

CQSM = (C,C, [(S,L(Q),D,N)])

QSM = Inflist(C,C, [(S,L(Q),D,N)])

For the state QSM, an infinite list will be expressed as

H0 ◮ T = H0 ◮ H1 ◮ H2 ◮ · · ·
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where H is an element of the correct type for the infinite list.
The instructions do the following tasks:

Call n lbl —Calls the subroutine at lbl, copying the top n elements of the classical stack to
a classical stack for the subroutine.

Return n — Uses the return label in the head of the dump to return from the subroutine.
It also copies the top n elements from the classical stack and places them on top of the
saved classical stack from the dump element.

(Call n ⊲CC:C,C, [(Si,L(Q)i,Di,Ni)])0 ◮ T

=⇒ (C,C, [(Si,L(∅)i,Di,Ni)])0 ◮ lift (enterf n ⊲CC) T

enterf n ⊲CC(C, v1: · · · :vn:S,Q,D,N)

=⇒ (CC, [v1, . . . , vn],Q,R(S, ⊲C):D,N)

(Return n, v1: · · · :vn:S ′,Q,R(S, ⊲C):D,N)

=⇒ (C, [v1, . . . , vn]:S,Q,D,N)

Figure A.13: Transitions for function calls.

To illustrate how Call is being processed, consider the following diagram:

(0) M0 ◮ M1 ◮ M2 ◮ M3 ◮ . . .

(1) (Call f) : 0 ◮ f ·M1 ◮ f ·M2 ◮ f ·M3 ◮ . . .

(2) (Call f) : 0 ◮ 0 ◮ f · f ·M2 ◮ f · f ·M3 ◮ . . .

(3) (Call f) : 0 ◮ 0 ◮ 0 ◮ f · f · f ·M3 ◮ . . .
...

At the start, in line (0), the machine has state M0 ◮ Mi. After the first call to f, at line
(1), the head of the infinite list state has been zeroed out, indicating divergence. However, at
every position further down the infinite list, the subroutine f is entered.

Continuing to line (2) and calling f again, the divergence has moved one position to the
right and we now have a state of 0 ◮ 0 ◮ f · f ·Mi. Line (3) follows the same pattern. Thus,
the further along in the infinite list one goes, the greater the call depth.

The Call and Return instructions use a dump element as part of subroutine linkage.
The Call i lbl instruction creates a dump element to store the current classical stack and the
address of the instruction following the Call instruction. The Return n instruction will use
the top dump element to reset the code pointer to the saved return location. Return also
takes the classical stack from the top dump element and the top n values from the current
classical stack are added to the top of it. Return then removes the top dump element.
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